All posts by Marty Kendall

redesigning nutrition from first principles

In a sea of nutritional gurus, theories and conflicting opinions, have you ever wondered,

“What should I eat to optimise my blood sugars, weight and health to feel great and thrive?”

If your answer is “yes,” you’re in luck!

This article sets out a bold proposal and methodology to redesign nutrition from the ground up using first principles.

null

It also gives you a peek under the hood of the Nutrient Optimiser, an exciting new tool to help you identify optimal foods to incorporate into your diet to achieve your goals.

Overview

But before you dive in, let me give you an overview of where we’re going.

  • Humans require food that contains:
    • adequate nutrients,
    • energy (but not too much), and
    • the ability to maintain healthy hormone levels.
  • The Nutrient Optimiser algorithm considers insulin load, nutrient density and energy density to identify optimal foods to suit different people with different goals.
  • People with diabetes or some degree of metabolic syndrome are on a blood sugar/insulin rollercoaster which drives appetite and fat storage.
  • Stabilising blood sugars and insulin levels using a lower insulin load dietary approach can help to normalise appetite and improve energy levels and often leads to a degree of spontaneous weight loss.
  • Being able to accurately quantify the insulin load of our food enables us to ensure we invest it wisely on protein and other nutrient-dense foods while still maintaining excellent blood sugar levels.
  • The foods that require the least insulin are typically high-fat foods which may not contain adequate amounts of vitamins and minerals.  We need to find the balance between a lower insulin load and adequate nutrient density.
  • Some nutrients are easier to obtain than others. The nutrient density index embedded in the Nutrient Optimiser algorithm prioritises foods that contain more of the harder to find nutrients.
  • People on a low carb or ketogenic diet often miss out on a number of nutrients, particularly electrolytes (e.g. potassium, magnesium, calcium and sodium) and our pancreas will increase insulin levels to enable our kidneys to hold on to these nutrients if we are not getting enough of them from our diet, and thus drive insulin resistance.
  • We can use energy density to manage how filling our food is to suit our goals.  For example, someone wanting to lose weight by eating less by decreasing their energy density or someone wanting to eat more by increasing energy density.
  • The Nutrient Optimiser considers what you are currently eating and identifies nutrient-dense whole foods that will provide the nutrients that you are not getting enough of while also managing your blood sugars and weight goals.
  • The Nutrient Optimiser can help retrain people to make progressively better food choices and reduce nutrient-poor processed foods using a quantitative algorithm that eliminates the emotion, belief and conflicts of interest that often derail our best nutritional ntentions.

My why

My name is Marty Kendall, and my journey into nutrition started fifteen years ago when this happened…

null

…and we started thinking about having these.

null

My wife Monica has Type 1 Diabetes.  Not too long after we got married we started researching how we could optimise her blood glucose control to minimise the risks associated with a diabetic pregnancy.

And personally, I have a family history and my own struggles with prediabetes and obesity (as you can see from the “before and after” below).

null

By day I’m an engineer.  I like to use data to optimise things quantitatively.

null

I even spent a period of time developing trading systems.  In this environment, it is critical to eliminate emotion, belief and confirmation bias.

As they say, necessity is the mother of invention.  I got frustrated with the lack of useful information for people with diabetes and decided to take matters into my own hands to create the optimal nutritional solution for my family.

The key components of optimal nutrition

You may have noticed that there is a lot of argument and conjecture about what is the best diet.  Unfortunately, decades of expensive epidemiological studies don’t seem to have provided any clarity.

Paleo, vegan, low carb, fruitarian, pescetarian, Mediterranean, vegetarian, plant-based, ketogenic, the list of nutritional camps goes on and on.

But when you peel away the dogmatic belief and conflicts of interest I think what we really need from our food is:

  • adequate nutrients,
  • enough energy (but not too much), and
  • the ability to maintain healthy hormone levels (e.g. insulin, ghrelin, leptin, mTOR etc.).

After experimenting with a range of parameters to optimise nutrition, the three that I have found to be most useful are:

While not as useful by themselves, we can combine these parameters using a multi-criteria analysis and apply different weightings to each parameter to optimise food choices to suit different people with different goals.

null

Given that the diabetes epidemic is exploding, let me start by discussing how we can quantify the insulin load of the food we eat to optimise our blood sugar control.

The blood sugar rollercoaster

Someone with diabetes is on a constant rollercoaster of treating blood sugars with insulin.

You eat, and your blood sugars go up.  You dose with insulin, and eventually, your blood sugars start to come down.  Then you find your blood sugars have dropped too low so you feel compelled to eat again.  Maybe something sweet or a glucose tablet that you wouldn’t have otherwise eaten.  This cycle continues night and day.

null

The blood sugar – insulin roller coaster leaves you feeling fatigued and hangry, often gaining weight due to fat storage effects of excess insulin.

When the inputs of food and insulin are both large, it’s impossible to match the right amount of insulin to the food you eat.  There is always a massive error!  And the blood sugar swings are like a bad theme park ride.

null

So logically, the goal for someone wanting to manage their blood sugars is to reduce the dietary inputs that need insulin.[1]   But then, the next question is:

“What exactly is it in our food that raises blood glucose and requires insulin, and then how can we accurately quantify it so we can more effectively manage it?” 

The food insulin index data

A couple of years back, I stumbled across a motherload of Food Insulin Index data in a University of Sydney thesis[2] that I thought might hold some clues about how we could more accurately manage insulin.

So I exported the data into a spreadsheet and started tinkering with it to better understand the relationship between the food we eat, our glucose response and the insulin we need.

Our blood sugar response to glucose

It’s not a great surprise for most people to see that our blood glucose response is correlated with the carbohydrate we eat.

null

However, things get more interesting when we look at the insulin response to the food we eat.

Measuring our insulin response to food relative to glucose

The Food Insulin Index quantifies the area ‘under the curve’ insulin response to a range of foods.  Pure glucose is assigned a score of 100%, and everything else is measured relative to that.

The food insulin index is a little bit like the Glycemic Index.  However, rather than just measuring the maximum rise in blood glucose, the food insulin index measures the insulin response to the food we eat over time.

Understanding our insulin response to the food we eat is much more useful for someone who cannot keep their blood sugars at normal levels due to insulin resistance (type 2 diabetes) or not being able to produce enough insulin (type 1 diabetes).

Carbohydrates versus insulin response

When we plot carbohydrates against the Food Insulin Index, we find that, while high-fat foods such as bacon and avocado have a small insulin response, high protein foods (e.g. steak and fish) have a significant insulin response even though they don’t contain any carbs.

null

People with Type 1 diabetes find that they need insulin to cover the protein they eat.  However, the details of why and how much are often not well understood which leads to poor blood sugar control.

Fats versus insulin response

Higher fat foods have a smaller insulin response, while low-fat foods (which are typically processed grain products) have a high insulin response.

null

[Note: There are a couple of situations where fat will require insulin.  The glycerol backbone that holds fat molecules together can be converted to glucose via gluconeogenesis which will need insulin to metabolise.  Also, when we consume more energy than we require over the long term, regardless of macronutrient source, the pancreas secretes insulin to keep energy stored in the liver while the energy coming in from our diet is used up.   However, the changes in insulin levels due to dietary fat are negligible in the short term compared to the carbohydrates and protein.]

The insulin response to dietary protein

Although protein needs some insulin to help us build and repair our muscles and organs, higher protein foods tend to have a lower insulin response because they force out refined carbohydrates from our diet.

null

Does protein turn into chocolate cake?

When I first started looking into this issue, I thought the reason that protein requires insulin was because the glucogenic amino acids in protein were being converted to glucose which needs insulin.[3]

But I have since come to understand that it’s not quite that simple.  Protein does not turn to chocolate cake in our bloodstream.

null

I feel partially responsible for propagating that misunderstanding with my early posts on the food insulin index.[4] [5]  Many people are avoiding protein to minimise insulin, and I’ve been trying to set the record straight.[6]

Insulin has many critical roles in our body.

  • Most people are aware that insulin helps the body take glucose into the cells to be used for energy.[7]
  • Bodybuilders are well aware that insulin is an anabolic hormone that helps us use the protein we eat to build and repair muscle and organs.[8] [9] [10]
  • The third, lesser-known function of insulin, is that it works to hold glucose in the liver (i.e. glycogen) for later use when we’re not eating.[11]

Type 2 diabetes occurs when we become resistant to the effects of insulin, and stored glucose leaches out into our bloodstream.  Similarly, Type 1 diabetes occurs when the pancreas can’t produce enough insulin to keep glycogen stored in the liver, and we see our blood sugars rise.  Effective and efficient use of insulin in our body is critical to our metabolic health.

Most of the amino acids that make up protein can be converted to glucose via gluconeogenesis, but converting protein to ATP it’s really difficult compared to just using fat and/or carbs. for energy[12]  It takes a lot of energy to convert protein to glucose (we use 6 ATP to yield only 2 ATP of energy!).  So the body tends to look for other energy sources once you’ve consumed enough protein.

null

null

null

That’s why you can quickly become full-on lean protein, but we always have a “dessert stomach” with enough room for carbs and fat which are much easier for the body to use for energy.

null

Let me clarify this with a real-life example that is close to home.

null41.png

Pictured above is my wife Monica’s blood glucose response measured with a continuous glucose meter) to this meal of steak and veggies shown below.

null40.png

Over the first few hours after finishing the meal the carbohydrates in the veggies digest and raise her blood sugars.  Then the insulin that she injected with the meal kicks in and brings the blood sugars down.

But then over a period of about ten hours, we can see that she is slowly metabolising the steak which requires insulin for the anabolic process of muscle repair.  While the insulin is going to work on the protein, Monica doesn’t have enough insulin to stop the glucose being released into the bloodstream.

You could be forgiven for thinking that protein is being converted to sugar.  But it’s actually the glycogen in the liver leaching into the blood due to a lack of insulin.  Monica actually needs more insulin here to enable her to build and repair her muscles as well as keep glucose in storage in the liver at the same time!

Most people see their blood sugar decrease after a high protein meal due to the effect of insulin (the insulin released to metabolise the protein also brings the blood sugars down and keeps the glycogen shut in the liver).  If you find that your blood sugars rise significantly after a high protein meal, it might be a sign that you actually need more insulin to ensure you are effectively using the protein you are eating.

According to the Protein Leverage Hypothesis, (Simpson, 2005) rather than minimising protein, someone with diabetes eating less carbohydrate may actually require more protein.

“One source of protein loss is hepatic gluconeogenesis, whereby amino acids are used to produce glucose. This is inhibited by insulin, as is the breakdown of muscle proteins to release amino acids, and therefore occurs mainly during periods of fasting.

“However, inhibition of gluconeogenesis and protein catabolism is impaired when insulin release is abnormal, insulin resistance occurs, or when circulating levels of free fatty acids in the blood are high.

“These are interdependent conditions that are associated with overweight and obesity and are especially pronounced in type 2 diabetes. It might be predicted that the result of higher rates of hepatic gluconeogenesis will be an increased requirement for protein in the diet.”  [13] 

Type 1 Diabetes guru Richard Bernstein says he found it hard to build and maintain muscle before he understood the importance of matching insulin with protein.

null

However, after matching adequate protein with the right amount of insulin this is no longer a problem, even after more than seven decades of living with Type 1 Diabetes.

null

At the same time though, there’s no point choking down more protein beyond what you have an appetite for.   Regardless of the macronutrient source, there’s no use consuming more energy than you need, particularly as the errors in matching food with insulin can exacerbate the glucose/insulin rollercoaster.

Anyone who is somewhere on the spectrum of metabolic disease needs to invest their limited supply of insulin wisely (e.g. to metabolise protein to build and maintain muscle and metabolise limited glucose from nutrient dense green leafy veggies) rather than squander it (on refined grains and sugars).

I hope this interlude into protein metabolism gives you an insight into why a good understanding of our insulin response to protein is important.   While there are a wide range of other hormones that drive our metabolism (e.g. mTOR, leptin, ghrelin and PPK) most of these fall in line if we optimise insulin and blood glucose levels.

Fibre

As a general rule, indigestible fibre does not require insulin and does not raise blood sugar levels.  High fibre foods such as All Bran and navy beans tend to have a lower insulin response due to their high indigestible fibre content.  Hence, it appears that a ‘net carbs’ approach makes sense, at least for whole foods.[14]

[Note:  Many people with Type 1 find that they do require insulin or have a blood sugar response to sugar alcohols and other fibres used in manufactured foods so it may be prudent to adopt a total carbs approach when dealing with foods that come in a packet and claims to have low ‘net carbs’.]

Fructose

Fructose (a.k.a. fruit sugar) is processed in the liver without requiring insulin.  However, some of it is converted to glucose via gluconeogenesis.[15]   Analysis of the food insulin index data suggests that 25% of the fructose we eat requires insulin.   However, this is typically such a small component and difficult to calculate, so it’s generally not worth worrying about.

The solution

After playing around with the Food Insulin Index data for a while, I found we can more accurately predict our insulin response to the food we eat when, in addition to carbohydrate, we also consider the effect of indigestible fibre and protein.

null

[If you want to dig into this data a little more you can check out these charts in an interactive Tableau format here.]

With this improved understanding, we can then develop these formulas to calculate the insulin load and the percentage of insulinogenic calories.

null

Understanding the insulin load of our food helps us to more accurately calculate the insulin people with diabetes would need to inject, including for protein.   Or conversely, it can help them make better food choices so their pancreas can keep up and maintain healthy blood sugar levels.

Being able to calculate the proportion of insulinogenic calories allows us to identify the most ketogenic foods that will elicit the smallest insulin response in our pancreas.  Understanding the percentage of insulinogenic calories can be beneficial for people who require therapeutic ketosis to help with the management of cancer, epilepsy, Alzheimer’s or dementia.

With better food choices that require smaller inputs of insulin, we are able to smooth out the blood sugar-insulin roller coaster.

null

This is a big deal for someone with Type 1 diabetes.  However, the same principles apply to anyone on the spectrum of metabolic disease (which is a growing portion of the population).

I believe our first priority should be to normalise blood sugar and insulin swings.  Often satiety and weight loss will naturally follow as we are able to access our own body fat more efficiently and are not driven to eat by fluctuations in blood glucose and insulin.

Lack of nutrients in fattiest foods

However, after looking at the foods that elicit the smallest insulin response, I realised we may have another problem.  The least insulinogenic foods tend to be mainly fat!

null
While an unnecessary fear of fat has driven the unfortunate low-fat processed food saga that has been in place for most of my lifetime, I think we also need to acknowledge that the highest fat foods typically do not contain a lot of the essential vitamins and minerals.

This chart shows the nutrients contained in the fattiest foods as a percentage of the recommended daily intake for each of the essential nutrients.  The nutrients are then sorted to identify which nutrients these foods fail to provide in adequate quantities.

null

So if you ate a little bit of the eight hundred fattiest foods of the eight thousand foods in the USDA database you would not be getting the DRI for the following micronutrients:

  1. Vitamin D
  2. Folate
  3. Potassium
  4. Choline
  5. Manganese
  6. Vitamin C
  7. Magnesium
  8. Calcium
  9. Pantothenic acid
  10. Vitamin K
  11. Riboflavin
  12. Vitamin B6
  13. Vitamin A
  14. Vitamin E

Nutrients lacking in the most ketogenic foods

Rather than sorting by percentage fat, this chart shows the nutrients contained in the most ketogenic foods using the percentage insulinogenic calories formula shown above.

null

While these foods (refer summary below) are an improvement on the nutritional profile of the fattiest foods, they still do not provide the recommended daily intake for about a third of the essential nutrients.

null

So the next question is, what can we do to maintain low insulin levels and while still getting the micronutrients we need?

Enter nutrient density.

Nutrient density

Building on the work of the likes of Dr Mat Lalonde and Dr Joel Fuhrman I developed a nutrient density index to identify foods that contain more of the nutrients that are harder to find.

null54.png

Dr Lalonde’s nutrient density system considered all the essential nutrients in terms of nutrients per weight of foods and ended up with a very protein heavy (e.g. 60 to 70% of energy) array of foods.

Dr Fuhrman’s Aggregate Nutrient Density Index considered vitamins and minerals (but not amino acids or essential fatty acids) along with a range of other factors as noted below.

The following nutrients were included in the evaluation: fiber, calcium, iron, magnesium, phosphorus, potassium, zinc, copper, manganese, selenium, vitamin A, beta carotene, alpha carotene, lycopene, lutein and zeaxanthin, vitamin E, vitamin C, thiamin, riboflavin, niacin, pantothenic acid, vitamin B6, folate, vitamin B12, choline, vitamin K, phytosterols, glucosinolates, angiogenesis inhibitors, organosulfides, aromatase inhibitors, resistant starch, resveratrol plus ORAC score.[16]

Rather than prioritising all nutrients, I think we only need to worry about boosting the nutrients that we are currently not getting enough of.   To reduce any percieved bias or conflict of interest, my version of the nutrient density index only considers the essential nutrients that have established targets.

While there are many other nutritional parameters that are nice to have (e.g. phytonutrients, lycopene, lutein, zeaxanthin, phytosterols, glucosinolates, organosulfides, resistant starch etc.), they tend to come along for the ride if we focus on getting the essential nutrients from whole foods.

Unfortunately, we currently only have data for the nutrients that are actually in a food.  Hopefully one day we will also be able to account for your digestion, the effect of anti-nutrients and the bioavailability of nutrients from different food sources.

Most of the time these are not a problem as focusing on nutrient-dense foods eliminates most anti-nutrients.  Most people get plenty of amino acids, iron, zinc and vitamin A which are less bioavailability in plant-based sources.  However, if you are consuming a 100% plant-based diet, you may need to pay extra attention to getting adequate of these nutrients.

A well-formulated ketogenic diet

So, going back to the ketogenic foods, once we emphasise the harder-to-find nutrients, we get a massive boost in the micronutrient content of our diet, while still maintaining a ketogenic macronutrient ratio.

The image below shows the ketogenic foods with and without consideration of nutrient density.  When we boost the harder to find nutrients all of the nutrients get a significant boost.

null55.png

The nutrient score that you see on each of these charts enables us to compare the nutrient density of each these dietary approaches quantitatively.  While the recommended daily intake levels are not set in stone, and your body doesn’t flip an on/off switch once the minimum levels are achieved, I think we ideally want to meet the recommended intake levels for as many nutrients as we can.  However, there’s probably not much use chasing more than twice the recommended daily intake levels.   So, if we filled the whole red rectangle, we would get a perfect score of 100%.

As you’ll see below, we can create a theoretical list of foods that get us pretty close to a perfect nutrient density score of 100%.  However, in real-life, it’s hard to achieve such a high nutrient density score.  Dr Rhonda Patrick currently holds the top position on the Nutrient Optimiser Leaderboard with a score of 82%.

Low carb is more nutritious than keto

If we tweak the weightings in the multi-criteria analysis and put less emphasis on insulin load and more on nutrient density we get a more nutritious group of low carbohydrate foods and the nutrient score increases from 64% to 97%.

null

A summary of these foods is shown below.

null
While I could go on about the importance of the various vitamins, minerals and fatty acids, the thing I see most regularly with low carb diets is a lack of alkalising minerals such as potassium, magnesium and calcium.

The chart below shows a typical nutrient profile for someone following a ketogenic diet.  Notice the cluster of lower levels of potassium, magnesium and calcium at the top of the chart.  There has been a lot of talk about sodium lately.  However, it seems that these other minerals are actually harder to get in sufficient quantities.

null

Dr James Dinicolantonio references this study in his recent book, The Salt Fix, that shows that low sodium diets tend to lead to insulin resistance.

null

The kidneys call on the pancreas to secrete more insulin to help them hold onto sodium when there isn’t much coming in from our diet.[17]

null

Volek and Phinney point out that the fundamental problem with low salt diets is that they cause a loss of potassium which is critical for building and maintaining muscle.

“Salt depletion causes a compensatory loss of potassium, which has a negative impact on muscle mass since potassium is a necessary cofactor for building muscle.”

null

Managing sodium and potassium is a massive deal for our body, with 40% of the body’s energy and 70% of the brain’s energy used just to manage the sodium-potassium pump that is fundamental to our energy production.

As well as for sodium, the body upregulates our basal insulin to hold on to other electrolytes such as potassium and calcium.[18]

null

Ironically, a low carb or ketogenic diet that minimises total carbohydrates in an effort to reduce the bolus insulin required for our food, may actually lead to a reduction in electrolytes that drives insulin resistance through an upregulation of basal insulin to enable our kidneys to hold onto precious electrolytes if we’re not getting sufficient quantities from our diet!

Paul Jaminet points out that Palaeolithic diets were naturally high in potassium and low in sodium.  Salt was rare and highly valued, so we evolved mechanisms for protecting against the threat of low sodium levels.  However, because potassium was plentiful back then, we have not developed similar evolutionary mechanisms to protect us against low potassium levels, even though they are every bit as devastating to our health.[19]

Today, potassium tends to be hard to obtain from our diet or even from supplements (which are limited to 99mg when the RDI is 4800mg or nearly 50 capsules), so we need to pay particular attention to make sure we get enough of it.

While I don’t think it’s ideal to focus on just one nutrient, we get a respectable amount of nutrients if we just chase high potassium foods.

null

And while there are a number of fruits (like bananas) in the high potassium foods list, there are still a ton of non-starchy veggies if you need to manage your blood sugar levels.

null

Energy density

Once you have normalised your insulin and blood sugar levels to that of a metabolically healthy person, there may not be any use in doubling down on more dietary fat if your goal is to lose body fat.

If your goal is further weight loss, I believe the ideal approach is to maximise the nutritional content of your diet so you can minimise energy intake without risking nutrient cravings.  The image below shows how the weight loss phase of a ketogenic diet includes a substantial amount of fat coming from the body with a more modest dietary intake of fat and lower overall calories.[20]

null

Foods with a lower energy density (in terms of calories per weight of food) tend to be more filling and allow you to reduce energy intake naturally which will, in turn, allow your body fat to be used for fuel.

Optimal foods for weight loss if you’re still insulin resistant

These weight loss foods prioritise low energy density while also prioritising nutrient density and a low insulin load to help you lose weight if your blood sugars are still a little elevated.

null

And they contain a very respectable amount of nutrients.

null

Maximum nutrients with minimum energy

Meanwhile, the foods in this list just prioritise a low energy density and high nutrient density and hence provide a lot of nutrition without too much energy.

null

And the nutrient profile is spectacular!

null

A Protein Sparing Modified Fast is often used in weight loss clinics to maximise the rate of fat loss while ensuring you get adequate protein to maintain your lean muscle mass.

Adding nutrient density to this protocol will further improve your chances of success by avoiding cravings and nutrient deficiencies while maintaining an aggressive energy deficit.

What I find really interesting here is that, even though we are not prioritising any of the amino acids, we are getting tons of protein!  It seems that when we focus on the harder-to-find nutrients, protein becomes a non-issue.

It’s also interesting to note that the macronutrient split of these the most nutrient dense foods is similar to the macronutrients that generate the lowest ad lib energy intake.[21]

null

Conversely, actively avoiding protein tends to have a diabolical impact on the essential vitamin and mineral content of our diet as shown in the chart of the lowest protein foods below.

null

As you can see from the food list below, it’s hard to minimise protein without going very high carb or relying on a lot of refined fats.

null

Optimal foods for bodybuilders

If you’re a bodybuilder trying to build muscle you can focus on boosting the more anabolic branched chain amino acids (i.e. valine, leucine and isoleucine).

null

The foods listed below will help you recover and build muscle if you are working out.

null

Optimal foods for endurance athletes

If you are an endurance athlete who doesn’t want to rely on pasta and energy gels to get enough energy you can focus on high energy density foods while still keeping nutrient density high.

null

Foods with a higher energy density are not as nutrient dense.  However, these foods are still pretty good.

null

Micros > macros?

You may have noticed that the macronutrient splits of the various dietary approaches vary significantly.  However, what is consistently missing from these optimal food lists are sugars and processed grains which contain a pitiful amount of nutrition.  The contrast between the cereals, baked goods, snacks and fast foods…

null

… and the most nutrient dense foods is dramatic!

null

A low carb diet will ensure that you avoid the majority of these dangerous Franken foods along with the sugars, seed oils, anti-nutrients and chemicals that are often associated with processed grains.

However, what I’ve found, after playing around with all these food lists for a few years, is that everything seems to work out pretty well when we start by prioritising the harder-to-find micronutrients and tweak from there to suit our goals.

Personalised nutrition

A further problem that I identified with these lists is that they do not consider what YOU are currently eating.

null

Each person’s interpretation of a low carb, ketogenic or paleo diet will vary depending on preferences, finances, culture, appetite and activity levels.

I think what you really want to know is:

which foods will provide you with more of the nutrients you are not getting from your diet right now?

So this year I’ve developed the Nutrient Optimiser algorithm, a tool that will tell you:

  • what foods you should be eating more of,
  • which foods you should be eating less of, and
  • which new foods you should look for next time you go shopping.

Rather than adopting the Pete Evans diet or the Tom Brady diet for a period and then falling off the wagon once the meal plans run out, the Nutrient Optimiser will help you help you make continual incremental improvements in your journey towards optimal nutrition.

null

The algorithm takes your food log, entered in Cronometer, and analyses it to see which nutrients you are currently not getting enough of.

null82.png

Nutrient imbalances

We also look at the critical ratios to make sure we’re not prioritising nutrients that are going to exacerbate any current imbalances.  The chart below shows an example of how we can use these ratios to refine the nutrients we want to prioritise.

ratios ratio target recommendation
Omega 6 : Omega 3 0.3 < 4 omega 6 : Omega 3 ratio is good.
Zinc : Copper 7 8 – 12 zinc : copper ratio is outside limits.
Potassium : Sodium 1.5 > 2 potassium : sodium ratio is low.
Calcium : Magnesium 2.3  < 2 calcium : magnesium ratio is high.
Iron : Copper 11 10 – 15 iron : copper ratio is within range.
Calcium : Phosphorus 0.6 > 1.3 calcium : phosphorus ratio is low.

Tailoring nutrition to suit blood sugar and weight loss goals

The Nutrient Optimiser algorithm also helps you choose your ideal dietary approach based on your blood sugars as well as our performance and weight loss goals.

approach average glucose (mg/dL) average glucose (mmol/L)
well formulated ketogenic diet > 140 > 7.8
diabetes and nutritional ketosis 108 to 140 6.0 to 7.8
weight loss (insulin resistant) 100 to 108 5.4 to 6.0
weight loss (insulin sensitive) < 97 < 5.4
most nutrient dense < 97 < 5.4
nutrient dense maintenance < 97 < 5.4
bodybuilder < 97 < 5.4
endurance athlete < 97 < 5.4

Targeted nutrients to suit your symptoms

We can also factor in additional nutrients that relate to your current symptoms such as diabetes, low testosterone, fertility or a wide range of other conditions associated with nutrient deficiencies.

null

Optimal food to suit your goals

The algorithm then generates a suite of personalised food sorted in descending order lists tailored and prioritised to suit your goals.  And coming soon, optimal meals and meal plans that will align with your goals.

null84.png

Best and worst days

The algorithm also gives a nutrient score for each day of your food log.  You can learn a lot by reflecting on what you are consuming on your best and worst days.

null

Leaderboard

To date, I’ve run the Nutrient Optimiser analysis for about seventy different people.

It’s exciting to see the competitive types try to work their way up the leaderboard.

And if you’re a nutrition nerd like me you may find it interesting to head over to the leaderboard and drill down to see what each of these people is actually eating to achieve these high and low nutrient scores.

Sitting in first place at the top of the leaderboard is Dr Rhonda Patrick who, as you can imagine, does look like she eats pretty healthy.

null

But the best competition is against yourself, with incremental improvements by implementing the recommendations of each iteration of the Nutrient Optimiser analysis.  For example, we can see Andy Mant has made leaps and bounds in his diet in preparation for his recent Paris wedding.

image19.png

Andy had some great success with plenty of seafood and oysters (check out his report here).  Meanwhile, people like Amy boost their nutrients with organ meats on a zero carb approach.  Others achieve a high level of nutrient density with plenty of green veggies.

The Nutrient Optimiser still doesn’t force you to eat specific foods but allows you the latitude to find the best selection of foods that align with your preferences.

Want to learn more?

If you’re interested, all the food lists (and a whole lot more) are available for free here.

If you want to learn more about the Nutrient Optimiser you can check out the FAQ over at NutrientOptimiser.com.

There are also a number of Facebook groups where you can participate in the discussion about Optimising Nutrition and share the journey.

image60.png

image1.png

image21.png

image35.png

My hopes for the future

I presented the guts of this article as a presentation at Low Carb Down Under Gold Coast in October 2017.  A frequent comment was that it was apparent that I had spent a LOT of time developing the food lists and the Nutrient Optimiser.  Yes indeed, this has been a labour of love.  A challenging problem to solve with personal ramifications.

I would love to see the Nutrient Optimiser take off and help a lot of people and perhaps pay for a little of the time that I have invested into it.  Getting some income will enable it to be developed into a quality system that will help a lot more people.

But I really do hope that the system that I have developed will educate people to start an underground revolution by enabling them to confidently make food choices that provide them with the nutrients they need with enough energy while also optimising their hormones.

Decades of epidemiological studies have been fruitless in providing a clear direction as to the optimal human diet.  Nutrition research and education are so fraught with entrenched belief systems, confirmation bias and with conflicts of interest.

It’s impossible for the everyday person to know what they should eat to feel OK and thrive at life.  It seems Big Food is just winning and Big Pharma (also owned by the same companies) is making a killing cleaning up the mess.  The current system is broken and needs to change!

The Nutrient Optimiser algorithm gives us the chance to redesign and rebuild nutrition from the ground up.  My dream is that it will empower educated enthusiasts, then dieticians and personal trainers, then doctors, then insurance companies and then medical systems.  At that point, big food will catch on and realise they need to provide nutritious foods that enable people to thrive and win at life.

null

 

 

references

[1] http://www.diabetes-book.com/laws-small-numbers/

[2] https://ses.library.usyd.edu.au/handle/2123/11945

[3] https://optimisingnutrition.com/2015/07/06/insulin-index-v2/

[4] https://optimisingnutrition.com/2015/03/30/food_insulin_index/

[5] https://optimisingnutrition.com/2015/03/23/most-ketogenic-diet-foods/

[6] https://optimisingnutrition.com/2017/06/03/why-do-my-blood-sugars-rise-after-a-high-protein-meal/

[7] http://www.medscape.org/viewarticle/438374

[8] https://www.ncbi.nlm.nih.gov/pubmed/16705065

[9] https://www.bodybuilding.com/fun/max_insulin_response.htm

[10] https://www.t-nation.com/diet-fat-loss/anabolic-power-of-insulin

[11] https://www.youtube.com/watch?v=VjQkqFSdDOc

[12] https://chrismasterjohnphd.com/2017/08/19/29-gluconeogenesis-expensive-essential-mwm-2-29/

[13] https://www.ncbi.nlm.nih.gov/pubmed/15836464

[14] https://optimisingnutrition.com/2015/03/30/what-about-fibre-net-carbs-or-total-carbs/

[15] https://optimisingnutrition.com/2016/01/25/fructose-victim-or-villain/

[16] https://www.drfuhrman.com/learn/library/articles/95/andi-food-scores-rating-the-nutrient-density-of-foods

[17] https://www.ncbi.nlm.nih.gov/pubmed/21036373

[18] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC301822/

[19] http://perfecthealthdiet.com/

[20] https://www.youtube.com/watch?v=2KYYnEAYCGk

[21] https://www.ncbi.nlm.nih.gov/pubmed/24588967

“high protein” vs “low protein”

In a recent Facebook thread Richard Morris of 2 Keto Dudes fame said:

The lipophobics and the aminophobics are both talking past each other at strawmen.  

The hysteria is not just humorous, it’s confusing and turning away novices.  

This phony controversy causes people to recommend insane amounts of protein at BOTH ends of the spectrum.

Protein tends to be a passionate topic of discussion n the online macronutrient wars.  So I thought it would be useful to set out arguments at both extremes of the ‘protein controversy’ and detail some responses to bring some balance.  My hope is that this article will bring some clarity to the civil war in the low carb/keto community.

The TL:DR summary is:

  • appetite is a reliable driver to make sure you get enough protein to suit your needs,
  • our appetite decreases when we get enough protein,
  • it’s hard to overeat protein because it’s hard to convert to energy, so the body doesn’t want more than it can use,
  • most people get adequate protein without worrying about it too much,
  • people who require a therapeutic ketogenic approach should pay attention to their diet to ensure that they don’t miss out on essential micronutrients while maintaining a low insulin load, and
  • if you prioritise nutritious whole foods, you’re likely getting enough protein but not too much.

If you want more detail, read on! The arguments and responses of the two sides are outlined below.  The article then concludes with some learnings and observations from the Nutrient Optimiser about how we can optimise protein intake to suit our goals and situation.

High protein bros

This section outlines the arguments and responses from the “high protein bro” extreme end of the debate.

too-much-protein-720x7201.jpg

“There is no such thing as too much protein.”

Refined protein supplements do not contain the same quantity of much vitamins, minerals or essential fatty acids as whole foods.

As shown in the plot of percentage protein vs nutrient score, a focus on obtaining adequate vitamins, minerals and essential fatty acids from whole foods typically leads to obtaining plenty of amino acids.  Meanwhile, actively avoiding protein tends to dilute overall nutrient density in terms of vitamins and minerals.

null

The body typically down-regulates appetite before it consumes ‘too much protein’.  It is physically difficult to eat ‘too much protein’ from whole foods (although hyperpalatable whey protein shakes may be another matter).

While protein is beneficial, we also need a balanced diet that provides the other vitamins and minerals (e.g. electrolytes that will enable the kidneys to maintain acid/base balance which is critical to insulin sensitivity which is hard to obtain from protein supplements).

In summary, it is possible to focus too much on protein to the point that you are missing out on other important micronutrients.  Conversely though, if you chase micronutrients from whole foods you will get adequate amounts of protein.

“Fasting will cause you to lose muscle due to a lack of protein intake.”

A high-fat diet reduces the need for glucose and therefore the requirements for protein from gluconeogenesis decrease.  Someone who is ‘fat adapted’ with lower insulin and blood glucose levels will also be more readily able to access their stored body fat for fuel.

The body defends lean muscle loss by upregulating appetite.[1]  People with more body fat and/or lower insulin levels will likely find fasting easier than people who are lean and/or have high insulin levels.

Fasting will drive autophagy, which is beneficial, to an extent.  Fasting and feasting is a cyclic process of building and cleaning out.  We need to balance both parts of the cycle.  Humans generally do this well in the absence of hyper-palatable processed foods.

One of the benefits of fasting is that when you re-feed, your body will be more insulin sensitive so you will build back new muscle more efficiently with less protein and insulin required.  People doing regular multi-day fasts should ensure their average protein intake is adequate over a number of days and not just on the days they eat.

null

You should target more nutritious foods on your eating days to ensure you are getting adequate nutrients over the long term.  If your goal is to lose body fat, then re-feeding to satiety on very high-fat foods may be counterproductive in terms of fat loss and micronutrient sufficiency.[2]

“Everyone needs to lift heavy weights and be jacked.”

Not everyone wants to look good with their shirt off or is willing to invest the dedication that it takes to have a six-pack.  However, being active and having sufficient lean muscle mass is important to maintaining insulin sensitivity and delaying the diseases of ageing.  Doing something is better than nothing.  Having sufficient lean muscle mass is arguably better than manipulating macronutrients if your goal is glucose disposal and fat burning.

Low protein “ketonians”

This section outlines a number of arguments against ‘too much protein’ along with some responses.

“Too much protein will turn to glucose like chocolate cake in your bloodstream”

Protein can be converted to glucose via gluconeogenesis if there is no other fuel available.  However, gluconeogenesis does not come easily, and the body only resorts to increased levels of gluconeogenesis above baseline levels in emergency situations.  Gluconeogenesis yields only 2 ATP from 6 ATP.[3]

null

“Too much protein is dangerous for your kidneys”

High levels of protein are only a concern if you have a pre-existing kidney issue,[4] and even then not everyone is in agreement.

“Protein is expensive and a waste to use for fuel”

The fact that using protein for fuel is metabolically expensive can be beneficial if our goal is fat loss as it increases overall energy expenditure.[5] [6]  By contrast, fat and carbs are more efficient fuel sources.  Higher levels of protein intake will drive satiety as well as being less efficient and cause more losses.

High protein foods are often financially expensive.  Processed high fat and high carb foods are cheaper to produce and hence can have a higher markup applied to them.  Thus, food companies tend to promote cheaper foods with a higher carb and/or fat content.

“Too much protein is dangerous for people with diabetes.”

People with diabetes convert more protein to glucose through uncontrolled gluconeogenesis (i.e. due to insulin resistance in Type 2 and a lack of insulin in Type 1).[7]  They also find it harder to build muscle due to a lack of insulin.  Hence, people with diabetes may benefit from consuming more protein to maintain or gain muscle.

null

Conversely, people who are insulin sensitive may require less protein because they can use it more efficiently to build and repair muscle.

Older people tend to require more protein to prevent sarcopenia.[8]  A loss of lean muscle mass is a significant risk factor for older people.[9]

As shown in the chart below, people with diabetes (yellow lines) produce more insulin in response to protein than metabolically healthy people (white lines).[10]  Forcing more protein beyond satiety may make diabetes management more difficult.  However, most people get the results they require from reducing carbohydrates.  The fact that protein turns to glucose can be a useful hack for people with brittle diabetes who want to get their glucose without the aggressive swings that refined carbohydrates can provide.

null

“Too much protein will make it hard maintain healthy blood sugar levels because protein stimulates insulin and glucagon.”

Protein requires insulin to metabolise.  Insulin also works to keep glycogen stored in the liver.

As shown in the charts below,[11] an increase in protein in the diet typically forces out processed and refined carbohydrate and so decreases your insulin and glucose response to food.[12] [13] [14] [You can check out the interactive Tableau version of these charts here.]

null

null

People with Type 1 diabetes don’t have enough insulin to metabolise protein and maintain healthy blood sugars at the same time and hence require exogenous insulin.

People with Type 2 diabetes often have plenty of insulin but need to ‘invest’ their insulin wisely on metabolising protein to build muscles and repair their vital organs rather than ‘squandering it’ on refined carbohydrates.

People with hyperinsulinemia will often see their blood sugars decrease after a high protein meal as the insulin released to metabolise the protein also works to reduce their blood sugars.[15]

If you see your blood sugars rise after a high protein meal you may have inadequate insulin.  IF you have an insulin insufficiency, you may need to learn to accurately dose with insulin for protein rather than avoiding protein.[16]

“High protein will shorten life due to excess mTOR stimulation.”

Humans need to balance growth (i.e. increased IGF-1, insulin and mTOR) with repair (i.e. autophagy, fasting and ketosis).  Driving excess growth through unnatural means may not be beneficial for long-term health.

image18

However, the research into protein restriction and longevity is either theoretical or in worms in a petri dish where they grew more slowly when protein and/or energy was restricted.  Free-living humans typically don’t manage to voluntarily restrict energy intake.  We seem to have an inbuilt drive to protect ourselves from a loss of muscle mass, depression (note: good nutrition, especially amino acids is crucial to brain function) and loss of sex drive, and generally feeling cold and miserable.

null

Longevity research in monkeys suggests that energy restriction or at least a reduction in modern processed foods is beneficial.  However, there is no research in mammals that demonstrates that protein restriction extends lifespan or health span.

null

The low target protein values proposed by some for longevity (i.e. 0.6g/kg lean body mass or LBM) are practically impossible to achieve from whole foods without the addition of a significant amount of oils and refined fats and/or substantial calorie restriction to the point of rapid weight loss (e.g. check out the Nutrient Optimiser analysis of Dr Rosedale’s diet here).

There is a difference between lifespan and healthspan. Humans in the wild who are frail risk fractures and other complications related to muscle wasting and lethargy.

NF-Sarcopenia[1].jpg

As shown in the chart below, there is an optimal balance between growth and wasting.[17]  Too much insulin and you grow to the point that you get complications of metabolic disease.  Too little growth and you become frail, lose your muscle and bone strength then you may fall, break your hip and never get up again.

null9.png

“Just eating protein won’t give you gainz!”

Yes indeed!  You need to force an adaptive stress to cause muscle gains, not just eating protein.  If you work out, you will likely crave more protein.  This is natural and healthy and ensures that we can recover, adapt and get stronger.

“Overeating protein will make you fat.”

Excess consumption of any macronutrient will make you fat.  However, eating more protein and fewer carbs and fat tends to increase satiety.[18]

Research in resistance-trained athletes shows that overeating protein does not cause an increase in fat mass.[19] [20]  Research in sedentary adults shows that overeating protein causes a more favourable change in body composition than overeating the same amount of calories from fat and/or carbohydrate.

“Too much protein will lead to rabbit starvation.”

Healthy people can metabolise up to 3.5g/kg protein per day and digest up to 4.3g/kg per day.[21]  This makes sense in an evolutionary context (or even in more recent times before we had refrigerators) when there wouldn’t have been a regular supply of food but we would have needed to be able to use the food when we came across a big hunt after a long famine.

Theoretical research suggests there is no upper limit to protein intake to the point it is dangerous.   However, the practical upper limit seems to be around 50% of energy intake.  If you force extreme levels of protein, you get thirsty and pee out the excess protein.

Growing children and active people tend to crave higher levels of protein to build and repair their muscles (i.e. 10-year-old Bailan Jones, shown on the right here with his brother, who is a growing young man with Type 1 who consumes 4.4g/kg LBM).

13466027_1917951598431573_3293441911323145840_n

If you’re obese and eat only lean protein, your body will be forced to use body fat for fuel.  If you are very lean and eat nothing but very thin protein satiety will kick in and you will not have enough body fat to burn.  This is dangerous and leads to death.  So if you are already very lean and going to live in the wilderness with only wild rabbits to eat, make sure you take some butter.  However, most people will have adequate body fat to use for fuel for a significant period of time before rabbit starvation would be an issue.

null

“If you’re not losing weight, you should cut your protein and your carbs and eat fat to satiety.”

Reducing processed carbs helps to lower insulin and stabilise blood sugars and helps a lot of people reduce their appetite and lose body fat.[22] [23]  However, not everyone reaches their optimal weight with this method.

LCHF / keto works until it doesn’t.

Many people find that they need to reduce dietary fat in addition to carbohydrates to ensure they burn body fat.

null11.png

Restricting protein and carbs while eating ‘fat to satiety’ may lead to an inadequate intake of vitamins and minerals which can lead to cravings and a lack of satiety.[24] [25]

While reducing the insulin load of your diet to the point that we achieve healthy blood glucose levels often helps improve satiety, effective weight loss diets typically involve some permutation of reduced fat and/or carbs to achieve a reduction in energy intake.

Medical weight loss clinics typically use a version of a protein sparing modified fast which provides adequate protein to prevent loss of lean muscle mass while restricting carbohydrates and fat.[26] [27] [28]

People on a low carb or keto diet may have an increased requirement for protein due to the body’s increased reliance on protein for glucose compared to someone who is getting their glucose from carbohydrate.[29]  Protein is the most satiating macronutrient and eating more fat when your appetite is actually craving protein, or other nutrients may lead to excess energy intake.[30]

“Too much protein will kick you out of ketosis and halt fat burning.”

Contrary to popular belief (which is often propagated by people marketing ketogenic products), ketosis is only one of a number of pathways that we burn fat.

a0a55a6d380a1c59ba7ab5ff45490c43[1].jpg

Ketones (i.e. AcetoAcetate or AcAc) are produced when there we don’t have enough Oxaloacetate (OAA) to produce citrate in the Krebs cycle.[31]

If you are consuming enough protein and/or carbs to provide OAA you will still burn fat but through the Krebs cycle rather than via ketogenesis.  Thus, you may be “kicked out of ketosis” if you eat more protein but you’re still burning plenty of fat.[32]

null
fat burning via Krebs cycle or ketosis (via Amy Berger)

If you have high levels of NADH (which is associated with ageing and diabetes),[33] [34] [35] more of your AcAc will be converted to BHB in the liver.

Most people will see ketones in their blood increase when fasting or restricting energy intake due to the lack of OAA as they burn body fat.  As shown in the chart below, blood glucose levels decrease while BHB increases.

null

There are a number of beneficial processes (e.g. autophagy, increased NAD+, increase in sirtuins) that current during fasting/energy restriction that is associated with increased BHB.  It is possible that many of the benefits related to BHB may actually be due to these other beneficial processes that occur in endogenous ketosis (i.e. it’s probably not the ketones).

We can force higher levels of BHB in the blood by eating more dietary fat and less protein and carbohydrates.  In this case, high BHB may be an indication that you are eating more fat than can be burned in the Krebs cycle and it is building up in the blood.   High levels of BHB in the blood do not mean you are achieving the same benefits via exogenous ketosis as we do in endogenous ketosis.

If your AcAc is not converted to BHB due to a low NAD+:NADH ratio you will tend to see more breath acetone (BrAce).  If you do not have metabolic syndrome, you may see higher levels of BrAce (i.e. measured with the Ketonix) and lower levels of BHB in the blood.   You should also be aware that exercise and an adequate intake of B vitamins in the diet will also increase your NAD+ levels and ‘kick you out of ketosis’.

Before you get caught up chasing ketones by whatever means possible, you should keep in mind that someone who is metabolically healthy and easily able to access their body fat stores for fuel (i.e. low insulin levels) will have lower overall levels of energy floating around in their blood (i.e. from blood glucose, ketones or free fatty acids).  Higher levels of energy in the bloodstream is a sign of poor metabolic health and reduced ability to access and burn fat.

null

High levels of glucose lead to glycation.  High levels of free fatty acids lead to oxidised LDL.  High levels of glucose and free fatty acids tends to lead to glycated LDL.  High levels of ketones can similarly lead to metabolic acidosis if not balanced with an adequate mineral intake which may also ‘kick you out of ketosis’.[36]

Learnings from the Nutrient Optimiser

What is everyone else doing?

The Nutrient Optimiser Leaderboard demonstrates that low carbers have a wide range of protein intakes.

  • The average fat intake of these people is 60%, with half the people between 54% and 68% calories. The average carb intake is 11% with half the people between 6 and 15%.   So, we can see that this is generally a CLHF population.
  • Half of the people lie between about 1.4 and 2.5g/kg LBM with an average of 2.1g/kg LBM. In terms of percentage, half of the people sit somewhere between 18 and 29% of energy from protein with an average of 24% energy from protein.
  • Dr Rhonda Patrick, who is sitting at the top of the leaderboard, seems to be eating about 2.5g/kg LBM protein even though she says she is not particularly active and eats heaps of veggies.
  • People who are active tend to eat more protein (e.g. Brianna, Andy Mant and Alex Leaf).
  • “High” protein advocates Luis Villasenor of Ketogains and Dr Ted Naiman both seem to be consuming around 2.4g/kg LBM to support recovery from their higher activity exercise levels.
  • People following a zero carb approach tend to be eating more protein (e.g. Shawn Baker at 6.1g/kg LBM and Amy on 3.3g/kg LBM) as more of their energy comes from animal food. Perhaps many of the satiety effects of a Zero Carb dietary approach are actually due to the high satiety effects of protein.
  • The people with less than 1.0g/kg LBM tend to be relying on a significant amount of added fats and do not tend to achieve the highest overall nutrient score (see examples here, here and here).

What are the recommendations?

The very wide range of protein intake levels can be confusing.  Some are outlined below for reference.

  • In long-term fasting, we use about 0.4g/kg LBM protein from our body via gluconeogenesis.
  • The Estimated Average Requirement is 0.68g/kg body weight for men to prevent protein related deficiencies and 0.6g/kg body weight for women.  For a woman with 35% body fat, this equates to 0.92g/kg LBM as a minimum protein intake.[37]  (Note: These standard values are in the context of someone eating a conventional diet where they would typically be getting plenty of glucose from carbohydrates and are not particularly active, and protein requirements may be higher where someone is active and using some protein for glucose via gluconeogenesis.)
  • The Recommended Daily Intake is 0.84g/kg body weight for men to prevent protein related deficiencies and 0.75g/kg body weight for women (Note: For a woman with 35% body fat this equates to 1.15g/kg LBM as a minimum for someone who is sedentary).[38]
  • Steve Phinney recommends 1.5 to 2.0g/kg reference body weight (see slide below from his recent presentation in Brisbane) which equates to around 1.7 to 2.2g/kg LBM for someone wanting to lose 10% of their body weight to achieve their ideal ‘reference weight’. This increased level allows for some glucose to come from protein via gluconeogenesis and allows adequate protein for people who are not eating carbs and active.

15122969_10154011287195544_7194957696623434930_o1.jpg

  • Ketogains suggest 0.8 to 1.0g/lb LBM or 1.8 to 2.2g/kg LBM for people who are looking to maintain or build higher levels of muscle mass.
  • Mainstream bodybuilding recommends 1.7 to 2.5g/lb body weight or 3.7 to 5.5g/kg body weight.[39] For someone with 15% body fat, this equates to 4.3 to 6.4g/kg LBM!!!

What happens to micronutrients when we chase protein?

When I first started tinkering with nutrient density, I assumed that we would want to boost all the essential nutrients (i.e. similar to Dr Mat Lalonde’s approach[40]).  The chart below shows the nutrients provided when we prioritise foods that have higher amounts of all the essential micronutrients.  The amino acids are shown in maroon.

null18.png

The ‘problem’ with this array of foods is that, because protein is easy to obtain, this group of foods ends up being very high in protein!  Even the “high protein bros” won’t be able to consume seventy percent of their energy from protein.

grilld-healthy-guy-slider[1].jpg

As you can see from the figure below, we typically can’t eat more than 50% of our energy from protein.  However, satiety levels tend to be highest, and hence energy intake is the lowest at around 50% protein (dark blue area).[41]

null

There is generally no need to prioritise amino acids because it is easy to meet the Recommended Daily Intake for amino acids if we eat whole foods.

Emphasise only harder to find nutrients

Rather than prioritising all the micronutrients, the chart below shows the micronutrient profile that we get if we prioritise the harder to obtain micronutrients (shown in yellow) without prioritising any of the amino acids (shown in maroon).   (Note:  Vitamin E and Pantothenic Acid haven’t been prioritised as the target levels are based on population averages rather than deficiency studies).

null17.png

As you can see, we still get heaps of protein. However, we get a much better micronutrient profile in the vitamins and minerals because we are only prioritising the harder to find micronutrients.

Maximising nutrient intake while minimising energy intake appears to be central to reducing natural energy intake and minimising nutrient related cravings and bingeing.  It’s not hard to see how we could reduce our energy intake eating these foods while still getting plenty of the essential micronutrients.

Highest protein foods

For comparison, the chart below shows the nutrient profile of the highest protein foods.   It seems when we prioritise foods based on their protein content we end up missing out on a number of the vitamins and minerals.  Thus, there appears to be a danger that we will miss out on micronutrients when we focus only on protein.

null

Do plant-based diets provide enough protein?

The one situation I have seen people not meeting the recommended daily intake levels for protein is people following a purely plant-based diet.  In the nutrient profile shown below, Sidonie is only getting 11% of her calories from protein and you can see that leucine is not meeting the DRI levels while methionine and lysine are just meeting the minimum levels.  This may be a legitimate concern for someone on a plant-based diet as amino acids tend to be less bioavailable from plans in comparison to animals.

20637881_10154774580355544_1267803003644038293_n[1]

The image below shows the foods that will help to fill in the gaps in her current nutritional profile which is focused on high protein vegetables and legumes.

20638355_10154774580430544_4725061376075036243_n[1]

This food list shows the foods that would fill in Sidonie’s nutritional gaps if she was open to adding animal foods.  This is an interesting contast to the typical food list for someone on a low carb diet which has a much longer list of vegetables to rebalance the vitamins and minerals.

20664543_10154774580545544_5055478220757808800_n[1].jpg

Most ketogenic foods

The chart below shows the nutrient profile of the most ketogenic foods (i.e. the ones that require the lowest insulin by limiting carbs and moderating protein).  It seems that, if you actually require therapeutic ketosis (i.e. to manage epilepsy, cancer, dementia or Alzheimer’s), you will need to pay particular attention to getting adequate micronutrients (i.e. notably, choline, folate, potassium, calcium and magnesium).

null

Lowest protein foods

And finally, the chart below shows the micronutrient profile if we actively avoid protein.

null

It seems that actively avoiding protein has a diabolical impact on the micronutrient profile of our food.  However, when we focus on balancing our diet at a micronutrient level, everything else seems to work out pretty well.

So what should I eat?

With all the conflicting opinions it can be confusing to know what to eat.

In the end, it comes down to eat good food when hungry. 

If we remove hyperpalatable processed foods, I think we’ll have a much better chance of being able to trust our appetite to guide us to the foods that will be good for us.

The food lists below have been prepared to provide the most nutrients while aligning with different goals (e.g. therapeutic ketosis, blood sugar control weight loss, maintenance or athletic performance).  There are a whole lot of other lists in the Optimal Foods for YOU article that are tweaked to suit different goals.

I think if you limit yourself to these shortlists of healthy foods you will be able to listen to your appetite to guide you towards the protein rich foods, the mineral rich foods or the vitamin rich foods depending on your need right now.

approach average glucose (mg/dL) average glucose (mmol/L) PDF foods nutrients
well formulated ketogenic diet > 140 > 7.8 PDF foods nutrients
diabetes and nutritional ketosis 108 to 140 6.0 to 7.8 PDF foods nutrients
weight loss (insulin resistant) 100 to 108 5.4 to 6.0 PDF foods nutrients
weight loss (insulin sensitive) < 97 < 5.4 PDF foods nutrients
most nutrient dense < 97 < 5.4 PDF foods nutrients
nutrient dense maintenance < 97 < 5.4 PDF foods nutrients
bodybuilder < 97 < 5.4 PDF foods nutrients
endurance athlete < 97 < 5.4 PDF foods nutrients

Once you’re eating well and want to further refine your diet you want to check out the Nutrient Optimiser.

null

 

references

[1] http://www.nature.com/ejcn/journal/v71/n3/full/ejcn2016256a.html?foxtrotcallback=true

[2] https://optimisingnutrition.com/2016/10/29/the-complete-guide-to-fasting-book-review/

[3] https://www.youtube.com/watch?v=Og8PTdjVAWE

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031217/

[5] http://www.tandfonline.com/doi/abs/10.1080/07315724.2004.10719381

[6] http://ajcn.nutrition.org/content/87/5/1558S.long

[7] https://www.ncbi.nlm.nih.gov/pubmed/15836464

[8] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555150/

[9] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066461/

[10] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524031/

[11] https://public.tableau.com/profile/marty.kendall7139#!/vizhome/foodinsulinindexanalysis/insulinloadvsFII

[12] https://optimisingnutrition.com/2015/06/29/trends-outliers-insulin-and-protein/

[13] https://public.tableau.com/profile/marty.kendall7139#!/vizhome/foodinsulinindexanalysis/fatandFII

[14] https://optimisingnutrition.com/2015/06/29/trends-outliers-insulin-and-protein/

[15] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524031/

[16] https://optimisingnutrition.com/2015/08/10/insulin-dosing-options-for-type-1-diabetes/

[17] http://press.endocrine.org/doi/full/10.1210/jc.2011-1377

[18] http://ajcn.nutrition.org/content/97/1/86.full

[19] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617900/

[20] https://jissn.biomedcentral.com/articles/10.1186/1550-2783-11-19

[21] http://www.sciencedirect.com/science/article/pii/S0261561417302030

[22] http://annals.org/aim/article/717451/low-carbohydrate-ketogenic-diet-versus-low-fat-diet-treat-obesity

[23] https://jamanetwork.com/journals/jama/fullarticle/205916?rel=1

[24] https://optimisingnutrition.com/2017/03/19/micronutrients-at-macronutrient-extremes/

[25] https://optimisingnutrition.com/2017/03/11/which-nutrients-is-your-diet-missing/

[26] http://www.mdedge.com/ccjm/article/96116/diabetes/protein-sparing-modified-fast-obese-patients-type-2-diabetes-what-expect

[27] https://www.dropbox.com/s/rjfyvfsovbg9fri/The%20protein-sparing%20modified%20fast%20for%20obese%20patients%20with%20type%202%20diabetes%20What%20to%20expect.pdf?dl=0

[28] https://optimisingnutrition.com/2017/06/17/psmf/

[29] https://www.ncbi.nlm.nih.gov/pubmed/15836464

[30] 2http://ajcn.nutrition.org/content/87/5/1558S.long

[31] http://www.tuitnutrition.com/2017/09/measuring-ketones.html

[32] https://itunes.apple.com/us/podcast/mastering-nutrition/id1107033358?mt=2#Really

[33] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869616/

[34] https://www.hindawi.com/journals/jdr/2015/512618/

[35] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683958/

[36] https://optimisingnutrition.com/2016/11/19/the-alkaline-diet-vs-acidic-ketones/

[37] https://www.nrv.gov.au/nutrients/protein

[38] https://www.nrv.gov.au/nutrients/protein

[39] https://www.youtube.com/watch?v=3PhVURDZi1c

[40] https://www.youtube.com/watch?v=HwbY12qZcF4

[41] https://www.ncbi.nlm.nih.gov/pubmed/24588967

vegan vs keto for diabetes… which is one optimal?

I recently watched the Mastering Diabetes teleseminar on ketogenic diets with high hopes of picking up some gems of wisdom from the rising stars of the plant-based diabetes community.

Unfortunately, I was underwhelmed with what I heard.

I shared my frustration on Facebook.

Robb Wolf suggested I put together a response to some of the misinformation in the teleseminar.  Hence this post.  [Robb did an excellent breakdown on the claims in the What the Health Netflix doco, What the Health: A Wolf’s Eye View, which I highly recommend checking out if you haven’t already.]

What’s actually wrong with the keto diet for diabetes?

Cyrus Khambatta (aka Mangoman) and Robby Barbaro (The Mindful Diabetic) should be uniquely qualified, both academically and experientially having themselves lived with type 1 diabetes for decades.

If I were was going to attack keto for diabetes management, then there would have been a couple of ‘free kicks’ I think they could have taken.  So, in fairness to both sides, I’ll touch on a few of what I see as legitimate issues with ‘popular keto’ before I dissect the Mastering Diabetes presentation.

Giving fat a free pass

Humans like things to be straightforward and binary.

Yes or No.

Black or white.

High fat or low fat.

Low carb or high fat.

High protein or low protein.

Plants only or animals only.

For the last four decades, we have been told that fat, particularly saturated fat, is bad because it causes heart diseases and should be avoided.

The tide is now turning.  However, there will always be people who take things to the extreme.

Now fat is healthy.  But is more is better?

Ketones are good.  So more is better?

For many people, a higher fat diet will be more satiating, particularly compared to processed grains and sugars.  However, not everyone can ‘eat fat to satiety’ without some level of restraint and self-discipline.  We can’t all trust our appetite to kick in to effortlessly provide the lean and chiselled body that they dream of.

null

My personal experience is that you can overdo the fat and drive insulin resistance by pushing fat too hard.  If you exceed your ‘personal fat threshold’[1], your adipose tissues will become insulin resistant, and the body will start pushing excess energy to the vital organs.

While there is no need to fear fat, there is no reason to go hog wild to compensate for the butter and bacon deficiencies that we all developed over the past four decades.

When it comes to nutrition, you need to get your big rocks in place first (i.e. the nutrient dense foods).  You can then fill up with fuel such as fattier foods if you do not want to burn any body fat.  You could even add some starchy carbs if your blood sugars allow.

Having some level ketones is an indication that your insulin levels aren’t too high and your metabolism is working.  However, if you are not yet metabolically healthy, chasing ‘fauxtosis’ by loading up on butter, coconut oil, cream and exogenous ketones to achieve high blood ketone levels can be a recipe for hypercaloric metabolic disaster that will drive insulin resistance.

People with type 1 diabetes (such as the Mastering Diabetes guys and my wife Monica) have a unique insight into the various factors that affect their insulin sensitivity.  They can monitor their daily insulin dose.

I know some people with type 1 diabetes who have made an effort to chase higher ketones with more refined fat and less protein but found that they ended up needing more insulin.  Retreating to a moderate to high protein approach with less added fat (as per Dr Bernstein’s recommended approach for Type 1 diabetes) enabled them to improve their insulin sensitivity (e.g. check out Allison’s Nutrient Optimiser analysis here).

This phenomenon is not unique to people with type 1 diabetes.  There seem to be more and more people start out believing calories don’t count, only hormones.  They then put their faith in the ‘magic ketone fairy’ and end up driving insulin resistance and obesity chasing ‘optimal ketone levels’ with more and more added fat.[2]

I have a dream

Before we get into the nutritional analysis, permit me this indulgence to share my vision (with a hat tip to Martin Luther King) from Martin Laurence Kendall.

I have a dream that one-day nutrition will be defined by the nutrients that a food contains and the health benefits that it confers rather than religious and ethical beliefs or commercial interests.

I have a dream that all people, mothers and children, fathers and brothers, would be able to clearly understand the foods that are truly optimal for them.

I have a dream that one day all people afflicted with diabetes will be able to choose foods that will enable them to achieve normal blood sugars and restore the health and vitality that they deserve. 

Further, that they will be able to choose optimal foods, with engineering precision, without being affiliated with the needless ridicule that they will needlessly die of a heart attack due to unnecessary fears about ‘artery-clogging saturated fat’ or ‘harmful animal proteins’. 

I have a dream that one day people will have, freely in their grasp, quality nutritional information that enables them to make informed choices that will, in turn, bring about a new day in the commercial food environment. 

I dream that one day all people, obese, diabetic, children and athletes alike,  will be free from the corruption of Big Food and Big Pharma working through diabetes educators, diabetes associations, heart associations, medical institutions and animal welfare advocates.   

Free at least.  Free at last. 

I hope that one day we will be free at last. 

Indulgence over.  On with the data.

On with the data.

Nutrient deficiencies in a high-fat diet

Another fact that I thought Cyrus and Robby would mention was that very high-fat foods tend to have a weak nutrient profile, especially compared to non-starchy vegetables.

The chart below shows the nutrients provided by the 800 highest fat foods out of the 8000 foods in the USDA database.   If we prioritise fat, we will likely be lacking in around half of the essential nutrients.

A summary of some of the highest fat foods is shown below.

[For some real-life examples of the poor nutrient profiles achieved by people chasing high ketone levels in the misguided pursuit of weight loss check out the Nutrient Optimiser reports here, here, here here and here.]

Vitamins and minerals,  in particularly electrolytes such as potassium, magnesium and calcium are critical to support our mitochondria, enabling them to produce energy and maximise insulin sensitivity.

People in the keto community are conscious that electrolytes are essential and go out of their way to supplement with magnesium, calcium, sodium and potassium as well as taking bone broth.

The kidneys let go of water and electrolytes when insulin levels drop.  A ketogenic diet without attention to green leafy veggies is at risk of being very low in electrolytes.  This will cause the pancreas to secrete more insulin to hold onto the scarce electrolytes.  This increase in insulin levels may[3] ironically drive insulin resistance.

Whether you call them electrolytes or alkaline foods[5], our bodies need enough substrate to allow our kidneys to maintain a good acid/base balance without having to work too hard.  Focusing on minerals can helps us maximise insulin sensitivity and ensure oxygen is efficiently be carried around our bloodstream.

There are plenty of foods available to provide the micronutrients that you need if you actually require therapeutic ketosis as an adjunct to cancer, epilepsy or dementia.  We can achieve the Daily Recommended Intake (DRI) for most of the nutrients while still maintaining a low dietary insulin load.

The short list of foods that comprise a ‘well formulated ketogenic diet’ are shown below.

However, if you just need to manage diabetes with a low-carb diet (rather than therapeutic ketosis), you can achieve even higher levels of nutrition while maintaining stable blood sugars.

Given my family history of Type 2 and my wife Monica’s Type 1 diabetes, we generally focus on the foods listed below.  Lots of people have found these lists useful.  You can pin them to the fridge as a reminder of what you should focus on or print it out to take shopping next time when you need some inspiration.   (There is a complete list of nutrient dense foods to suit different goals at the end of this article.)

Now my blood glucose levels are more stable, I’ve been trying to back off on the higher fat foods and focus on more nutrient-dense foods to build muscle and lose fat.

The ‘problem’ with the most nutrient-dense foods (as shown below) is that they typically have a very low energy density so it will be nearly impossible to get enough energy to prevent rapid weight loss.

Prioritising nutrient-dense foods is the secret to obtaining the nutrients you need with the lowest energy intake.  If you don’t want to keep losing weight or want to run a marathon then adding some higher energy density foods will be useful.

High carbohydrate foods are not  nutritious

After watching the Mastering Diabetes teleseminar, you will get the feeling that the Mastering Diabetes guys believe carbohydrate can do no wrong and we should only fear fat.

The reality, however, is that the foods with the least fat are generally even more nutritionally corrupt than the highest fat foods.

Not all of the low-fat foods are going to be beneficial.

Defining your nutritional approach as ‘high carbohydrate’ is not wise, especially if you are trying to manage diabetes.  The foods with the most carbohydrates in our food system are typically very nutritionally deficient as well as highly insulinogenic.

If a ‘low carb diet’ leads you to avoid processed foods you may be better off.  However, I don’t think defining nutrition in terms of macronutrient extremes is particularly useful. [6]

Plant-based versus animal-based foods

One area where vegans potentially have it over carnivores is vitamins and minerals.  As shown in the chart below, a zero carb diet does not provide really high levels of many nutrients.

2017-06-26-5[1]

At the same time, there are plenty of people who appear to be thriving on a zero carb dietary approach.  Many people with severe autoimmune related digestive issues succeed when they switch to a zero carb approach.   Zero carb advocates will also tell you that they don’t need the recommended daily intake levels of the various micronutrients that are based on limited data or deficiency studies in people eating a standard high carb western diet.

2017-06-26-4[1]

A plant-based diet can provide a reasonably nutrient dense outcome.  However, it will be hard to get adequate levels of omega 3, vitamin D and vitamin B-12.  People following a strictly plant-based approach may need to supplement with these nutrients.

Achieving the minimum protein intake levels is possible.  However, many people have concerns about the reduced bioavailability of plant based proteins and whether or not the minimum protein intake levels are actually optimal, particularly if you are active or older.

It’s also worth noting that other nutrients such as iron, vitamin A and omega 3 will be more bioavailable from animal-based sources.  So it’s not as simple as comparing the nutrients in the food, what gets into your body is what really matters.

If you are going to follow a plant-based diet then prioritising the food listed below will give you the best chance of success.  Most people are going to do best somewhere on the spectrum between exclusively plant-based and solely animal-based foods.

The real problem comes when we start to heavily process our food.  Rather than prioritising the most nutrient dense and minimally processed vegetables, fruits and legumes, many vegans end up living on processed grains, cereal, sugar and soy products that have been treated with a host of fertilisers and pesticides.  Meanwhile, many zero carbers or keto peeps end up living on nothing but bacon or processed meats from animals that were fed nutrient poor corn and grains with added antibiotics to make them grow quicker.

The vegan echo chamber

I have spent a good chunk of time hanging out in many vegan or plant-based groups trying to understand their position and gain insights about nutrient density.  I have learned a lot from people like Professor Christopher Gardner, Ray Cronise and Dr Joel Fuhrman.  Much of the analysis in this is based on the integration of my learnings their work with Dr Richard Bernstein and Dr Matt Lalonde.

Unfortunately, it seems that the vast majority of vegan/plant-based education comes from Dr Michael Greger through his sanitised, highly processed and hyper-palatable “Nutrition Facts” videos.

While Greger covers a lot of relevant research and raises some valid points, a lot of the time he seems to twist the science to ensure that the moral of the story is always ‘eat plants, not animals’.  Plant-based is better.  Eating animals will be bad for your health.

Without evolutionary context, we are asked again and again to believe that fat (particularly saturated fat) and ‘animal protein’ (whatever the hell that is!) is the primary cause of heart disease, the complications of diabetes and practically every other modern health ill.

There is no demonstrated biochemical mechanism provided as to how we suddenly became allergic to animal products.  Meanwhile, vegans advocates generally give a free pass to sugar and processed grains.

With more than six million views and an estimated earnings of more than $100k per year from YouTube[7] (not to mention donations[8]), there appear to be a LOT of people eager to lap up the nutritional and medical justification of their ethical position.

Greger’s unique ‘interpretation’ of the scientific data all starts to make sense once you understand that he is the Director for Public Health and Human Agriculture for the Humane Society International.[9]

The mission of the Humane Society is to celebrate animals, confront cruelty and shape public opinion.

I wonder if Greger does his researching, writing, filming and editing the Nutrition Facts videos as a hobby after he gets home after working 50 hours a week and commuting?   Or perhaps he creates these videos as an employee of the Humane Society as part of their stated goal to shape public opinion on animal cruelty?

It seems Mangoman and Robby are pretty tight with Greger.[10]  Makes me wonder if Mastering Diabetes is a coordinated and strategic assault by the Humane Society on the low carb/keto/diabetes community who have become immune to Dr Greger.

I am by no means advocating animal cruelty.  However, as a human,  if you are looking for the best advice on human nutrition, is it wise to put your blind faith and unswerving trust in someone whose explicitly stated primary goal is animal welfare?

Do you really want to save the planet?

Worrying about whether we eat plants or animals exclusively is a modern luxury, an intellectual indulgence of sorts.

For the majority of human history, we have been opportunistic omnivores.  When plants were the only thing that was available, we would eat them.  When we could, we would chase down an animal to get the protein we need to thrive.  We never had to worry about nutrient density because the foods we ate grew in fertile soil without pesticides.  The animals we ate were eating their natural foods which were also nutritious for them.

Humans thrived and were able to populate the world because we learned to hunt, store, cook and process food.  We became very good at getting the nutrients we needed with the minimum amount of effort.[11][12] [13]

Unfortunately, we have now become too good at processing food.

Many of us are now fantasising nostalgically about Paleo times.

Related image

It’s one thing to worry about saving animals, but ultimately we need to save the planet and our human race from accelerated extinction.

Our newfound ability to harvest fossil fuels enables us to move around in cars and grow a massive amount of food with chemical fertilisers.  These foods grow quickly and give us plenty of energy, but few nutrients that we then process and feed to animals or humans.[14]

Take a moment to think about how your life would be different if we had never discovered fossil fuels (e.g. coal or oil).  For as long as it lasts we are gorging ourselves on stored energy that is making us lazy and obese and driving not just us, but life as we know it to an early grave. If you want to care about something it should be the sustainability of the global environment (including animals and humans).

If you want to care about something it should be the sustainability of the global environment (including animals and humans).

While humans are probably the biggest threat to the long-term sustainability of earth as we know it, most of us aren’t willing to volunteer ourselves or our family as the first ones to check out to save the planet.

[If you want some challenging thoughts on this topic you should check out Daniel Vitalis’ Why I Hunt podcast.]

The plural of anecdote is not data

So, finally, onto the Mastering Diabetes video.

Cyrus and Robbie look like genuinely nice guys.

They are both living with type 1 diabetes.

They look like they’re happy and thriving on a plant-based diet full of fruits and vegetables.

To be honest, they look a lot healthier than many recovering diabetics in the low-carb scene.

But at the same time, the zero carbers will hold up anecdotes of people who have not eaten a plant for decades and look as great as the Johnson Family.

Or Dr Shawn Baker who is setting world records as a masters athlete since cutting plants out of his diet.

Then the keto folks will point to Dr Dominic D’Agostino who thrives on high fat and exogenous ketones and is exceptionally smart and can lift very heavy stuff at the same time.

 [15]

While it’s useful to look at populations of people following a particular diet to look for trends, anecdote does not equal data.

It is more useful to look at underlying metrics (such as nutrient density and insulin load) that we can use to identify the optimal diet for humans.

I thought they would know better

Cyrus Khambatta is a smart guy.  He was studying mechanical engineering at Stanford before he got type 1 and changed course to study nutritional biochemistry.

However, for all his ability in nutrition, engineering and mathematics (I took those classes, and I know how hard they are!), I thought he would have more to offer than what was presented!

People with diabetes get screwed around by the mainstream medical system and ‘diabetes education’ system.  The system doesn’t really understand how it works, so they give them bad advice (e.g. “just eat like we tell everyone else to and cover it with insulin”)!

I remember clearly the anxiety and confusion we experienced after going to an appointment with the hospital endocrinologist when my wife Monica was pregnant with our daughter.

At her visits, she would routinely be told that she needed to reduce her blood sugars to avoid the many serious risks and complications and risks for her and the baby.  Monica asked what else she could do to get the blood sugars down, but they had no advice.  They just wanted to see them lower.

We now have two healthy and wonderful kids, but I if I can I would love to see other people spared the anxiety as well as minimise the genuine health risks related to diabetes.  Hence my quest to understand how we can make intelligent food choices to optimise blood sugar and insulin levels.

What is the actual relationship between insulin and the food we eat?

The food insulin index data is a highly valuable resource that helps us to understand what causes us to secrete insulin and our blood sugars to rise.   The chart below shows the results of the food insulin index testing on more than 100 different foods (click to enlarge).

The food insulin index testing demonstrates clearly that we have the lowest insulin response to fats and oils while we have the highest insulin response to high carbohydrate foods like jelly beans and rice bubbles.   However, when we plot this data, we see that carbohydrate does not fully explain our insulin response.

We get a much better prediction of our insulin response when we account for protein (which requires insulin to metabolise) and non-digestible fibre.

Eating more fat will decrease the amount of insulin required to keep our blood sugars stable.

Eating more protein will reduce the amount of insulin your pancreas has to produce because it will push the more insulinogenic processed carbohydrates and sugar out of your diet.

How to improve your insulin sensitivity

If you reduce your intake of processed carbs and sugars, your insulin requirements will come down.  Once your organs and muscles are no longer swimming in insulin, you will become more insulin sensitive (just like you become more sensitive to coffee or alcohol if you cut back your intake).

If you are injecting insulin, reducing the insulin load of your diet will enable you to significantly reduce your insulin dosage which will, in turn, allow you to more easily access your own body fat stores for fuel.[16]

This data is an inconvenient truth for both high carb vegans or the nutritional recommendations such Food Pyramid / My Plate generated by the US Dept of Agriculture.  But I think it could be beneficial for people who want to effectively manage their diabetes.

Granted, if you switch your processed grains and sugar for fruits and vegetables, you will do better.  But is it really optimal?

If you can’t win, move the goalposts!!!!

So what do you do if you can’t win with science?

You change the rules!  You move the goalposts.

It was Cyrus and Robby’s unique definition of insulin resistance that really frustrated me.

So you can understand my frustration, I need to explain the difference between basal and bolus insulin which is a daily reality for someone with type 1 diabetes.

  • Bolus insulin is taken with food and is proportional to the insulin load of the food they eat (i.e. carbs – fibre + half protein)[17].
  • Basal insulin is the insulin that your pancreas would produce through the day and night whether or not you eat anything.  It’s the basal insulin that keeps your fat in storage and your muscles from being used for fuel.

You need both, but their function is different.

For someone eating a standard western diet about one-third to a half of their insulin will be basal insulin with the majority being bolus insulin for the food you eat.

When you switch to a low carb or keto diet this ratio flips and the majority of your insulin is basal insulin.  You only need a little bit of bolus insulin to cover the small amount of carbohydrates and protein that you eat.   With less glucose to deal with, you don’t need as much insulin, and your blood sugars stabilise.[18]

A significant portion of the Mastering Diabetes video was devoted to explaining their new creative definition of insulin sensitivity.  The fundamental problem with this central piece of the Mastering Diabetes argument is that it conflates basal and bolus insulin.  Your basal insulin is irrelevant if you are trying to do this sort of insulin sensitivity calculation!

It’s just the bolus insulin (i.e. for food) that matters when it comes to insulin sensitivity.  The calculations in the table below demonstrate my point.   If you take the denominator to your insulin sensitivity calculations to be the basal + bolus insulin, then the high carb approach has a better insulin sensitivity.  If you only consider the bolus insulin (the only sensible approach in my view), then you declare the low-carb approach to be the winner.

  low carb high carb conclusion
ISF (g carb/unit insulin) 6 5
carbs (g) 50 500
bolus insulin (units) 8.3 100
basal insulin (units) 20 20
total daily insulin (per day) 28 120
24 carb / 24-hour insulin (basal + bolus) 1.8 4.2 High carb is better
24 carb / 24-hour insulin (bolus only) 6.0 5.0 Low carb is better

The chart below shows the difference in the daily blood sugar fluctuations of someone on a standard western diet and then after switching to a lower carb diet.  The difference in the blood sugar levels is night and day!  The difference in the quality of life between these two situations when it comes to energy levels, anxiety, depression, mood etc. is also immensely different.

I pinged Mastering Diabetes on their Facebook page to clarify if the cornerstone of their whole argument includes basal and bolus insulin.  Unfortunately, my fears were confirmed (though they have since deleted their response and kicked me out of their Facebook Group).

Tight blood sugar control isn’t that important after all?

The next argument they try to run is that tight blood sugars really aren’t that necessary.

Cyrus (who is very active and practices intermittent fasting) has a Hba1c in the high 5s.

Robbie has a Hb1c in the low 6s.

Granted, this is good compared to the majority of the Type 1 population. They’ll have a better chance of thriving with good blood sugars if they are eating lots of vegetables and fruit compared to more processed grains and sugars that make up the typical diet.  But it’s still a far cry from the blood sugar control of people following the type of low-carb approach advocated by Dr Richard Bernstein.

The problem I see with defining your diet as vegan or plant-based is that most people don’t have the self-discipline to stick with eating only vegetables and fruit and end up filling up on more processed (but still technically vegan) processed junk food.

Cyrus and Robbie argue that normal blood glucose fluctuations are between 70mg/dL to 145 mg/dL or 3.8 to 8.0mmol/L.

The problem with this argument is that what currently passes for ‘normal’ is far from optimal.[19]  Complications from diabetes start to kick in well below what is widely considered “normal”.


Just because it’s normal for most people to do Facebook on their phone while they drive doesn’t mean it’s ideal or optimal.  Just because it’s normal to have poor blood sugar and most people are dying of metabolic diseases doesn’t sound like a persuasive argument for plant-based diet being optimal to me!

If you’re happy to settle for less than optimal blood sugar control because you have a strong ethical position, then that’s fine, but don’t construe it as optimal for everyone when it’s not.

The reality is that many people over at Type 1 Grit following Dr Bernstein’s approach are doing fabulously!  Not everyone will achieve optimal, but it’s useful to know what to aim for and how to get there.

If you had a child or loved one with Type 1 diabetes would you want the opportunity to choose the approach that would yield the best results or would you prefer your advice to be tainted with ethical or commercial bias?

Check out the video the Type 1 Grit group put together for Dr B’s 83rd birthday to thank him for changing their lives.

Insulin resistance and metabolic syndrome are a big deal, so let’s not ruin more lives than we need to with bad advice that is based on bad math or putting ethical convictions or religious beliefs ahead of human health.

Understanding physiological insulin resistance

Cyrus and Robbie argue that someone on a low carb diet won’t deal with carbohydrate well when they are exposed to them.  This phenomenon is real, but is typically due to what is termed ‘physiological insulin resistance’.

Someone who eats a lot of carbohydrates will have high levels of insulin floating around in their bloodstream.  Then when they eat a carb bolus, their pancreas is primed to shoot out some more insulin to mop up the glucose and stop more glucose being released into the bloodstream via the liver.  By contrast, someone who doesn’t eat a lot of carbohydrates will have low levels of insulin in their bloodstream and need to wind up their pancreas to produce insulin to bring down the glucose.

This phenomenon is also referred to the first phase versus second insulin response.  Someone who is not eating a lot of carbs will have a slower first phase insulin response.

It’s like comparing someone’s time over 100m when they are starting from a standstill versus someone using a rolling start.  It’s not a relevant comparison.  This phenomenon will go away after a few days on a high carb diet.

At the same time though, micronutrients such as potassium, magnesium and calcium are critical to maintaining healthy insulin sensitivity and glucose uptake.   Metabolic acidosis (caused by a lack of dietary electrolytes) appears to cause an upregulation in insulin by the pancreas to hold onto precious electrolytes.  Over the long term, this could be another driver of insulin resistance, metabolic syndrome and diabetes. [20]

Getting adequate dietary electrolytes from green leafy vegetables will make it easier for our body to maintain acid/base balance.  However, I don’t think we need to feed all diabetics a high carbohydrate exclusively plant-based diet to achieve this.

Eating fat makes you fat?

The vegan community seems to confuse eating fat and storing fat.  The Ancel Keys / vegan story is that we store fat in our body because we overeat dietary fat.  However, the reality is that we get fat because we eat more than we burn.

As shown in the graphic below from Ray Cronise’s Oxidative Priority paper, we will only burn fat (from our body or diet) once we’ve burned through the alcohol, ketones, protein and carbohydrate and fat that we eat (in that order).[21]

When we eat our body prioritises the refilling of our glucose and glycogen stores in our blood stream and liver (which can hold about 1200 to 2000 calories) before we start to store the excess energy in our adipose tissue.  Our body fat stores can hold a lot more energy, but not an unlimited amount.  Once our fat stores are full and can hold no more, they become insulin resistant.  We then start to store the excess energy in our vital organs such as our liver, kidney, brain, eyes, heart, etc.

The trick to weight loss is to keep your blood sugar levels low enough so that your liver glycogen is being replenished from your body fat rather than always having overfull glycogen stores, so we need to offload excess energy to our fat stores.[22]

One of the many roles of insulin is to shut off the flow of stored energy from the liver into the bloodstream.  If energy is coming in the pancreas will upregulate insulin to stop the flow of glucose from the liver back into the bloodstream (regardless of whether you’re eating carbs, fat or protein from animal or plant-based sources).  The best way to reduce insulin is to stop eating and let your stored energy flow back into your bloodstream.

In a way, you can think of your liver as your fuel tank and you your blood glucose meter as the fuel gauge.  If your blood sugars are high, you should think twice about whether you really need more fuel now.

If you are insulin sensitive, the bad news is that you can easily store excess energy as body fat very efficiently.  Insulin is an anabolic hormone that will help you to grow.  However, when you are insulin sensitive, you can lose fat relatively quickly when you reduce energy intake.  If you are insulin sensitive your circulating insulin levels will be low, and fuel will more easily flow from storage.  Hence you won’t be such a mindless slave to your uncontrollable appetite.

If you are insulin resistant and have high levels of circulating insulin, you may struggle to release your stored body fat.  Your appetite will drive you to seek out food because you can’t efficiently access it from your body stores.   You won’t be able to go very long between meals.

A low-carb diet can be helpful for someone who is insulin resistant because it can help lower insulin which in turn help them to normalise their appetite.  Teaching that we get fat because we eat fat is just outdated science.

Even Dr Joel Fuhman will tell you that actively avoiding fat is stupid.  He will also tell you that there is some value in eating fish on a regular basis to ensure you get adequate amounts of omega 3s and vitamin B-12.

Complications on a ketogenic diet

There are plenty of studies that show the shortcomings of a ketogenic diet.  Sarah Ballantyne did a great job of summarising these on her Paleo Mom Blog here.

When you look in detail however you find that the adverse reactions the ketogenic diet are typically due to ‘keto in a can’ formula products.

While these food substitutes will help achieve therapeutic ketosis to help manage epilepsy or other chronic conditions, many of these keto formula products end up being very low in micronutrients.[23]

Obtaining a significant amount of your energy intake from processed food-like products that have been separated from nutrients is not a good idea (e.g. whether it be sugar, processed grains, refined oils or exogenous ketones).

Is a low-carb diet actually good for diabetes?

Unfortunately, Cyrus and Robby didn’t mention the benefits of a low-carb diet for people with diabetes which are fairly well documented.  The seminal paper that summarises much of the latest work in this area is documented in Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base.

Anyone who is on the fence about using a low-carb diet to manage diabetes should check out this paper which shows that a low-carb diet is better for weight, HbA1c, glucose, HDL and triglycerides compared to low GI or a grain-based diet.

Another well-known study is Christopher Gardener’s A to Z trial[24]  where they found that the Atkins diet did much better than the low-fat, particularly if you were already insulin resistant.[25]

Image result for atkins at to z

What should you eat if you are a vegan with diabetes?

So, after all this, what should we eat to maintain optimal blood sugar levels?  Cyrus and Robby’s view is shown below.    Unfortunately, it appears that their recommendations are driven more by their philosophical and ethical views rather than the nutrient content of the food or their ability to stabilise blood sugars.

  • In the green column, most people with diabetes aren’t going to do too well with a lot of fruits, starchy veggies, and beans. Intact whole grains do contain substantial nutrients but are very hard to find in our modern food system.  Who actually eats wheat bran as a significant part of their diet?  The vast majority of grains are processed with the nutrients discarded, so they are tasty and shelf stable.
  • In the red column, dairy eggs, meat, fish and poultry can be nutrient dense and keep your blood sugars stable (as long as you’re not afraid of fat in whole foods or ‘animal protein’).
  • In the orange column, higher fat foods like nuts, seeds, avocados, coconut and olives can be useful to help stabilise your blood sugars, but it is possible to overconsume them if your goal is to lose weight.

We want to maximise nutrient density as much as possible while keeping the insulin load of our diet down to the point that we keep blood sugars stable.

This does not end up being super high fat or super low fat.  Fat just comes along with nutritious whole foods.

If you have diabetes, then a little more dietary fat initially may help to stabilise blood sugars.  Once your blood glucose levels have stabilised, you can start to decrease the dietary fat and increase nutrient density as much as you can while still maintaining excellent blood sugar levels.

A low insulin load diabetes-friendly plant-based nutritional approach will be lacking omega 3 and vitamin B-12.

The shortlist of nutrient dense low insulin load plant-based foods is shown below.  The foods at the top of each section should be reasonably safe for most people with diabetes.  You should test your blood sugars to see how you respond to some of the foods further down the list.

Many people who are conscious of animal welfare will eat fish (i.e. pescetarian).  Adding some fish will provide a much better nutritional profile than eating plants alone, with plenty of vitamin B12 and omega 3 available from the seafood.

I hope this is helpful for people who want to choose a plant-based approach to maximise nutrient density and maintain excellent blood sugar control.

If you’re still confused, I have designed the Nutrient Optimiser to identify what foods you should add or remove from your diet to ensure you are getting the nutrients you need while maintaining excellent blood sugar levels.

So which approach is optimal?

It depends.

The optimal approach for you will depend on your situation and goals.

Going plant based may be an improvement if your diet is currently full of sugar and processed grains, but it is not the singular solution to every ill.  (For an excellent example of a very nutrient dense plant-based dietary approach check out David’s Nutrient Optimiser analysis here.)

To help you make more informed food choices, I have devised two different ways of measuring food quality:

  • Proportion of insulinogenic calories, and
  • Nutrient density.

The proportion of insulinogenic calories is the percentage of the food you eat that will require insulin to metabolise.  The table below lists a range of nutritional approaches ranked by the percentage of insulinogenic calories (right-hand column).

If you’re interested in any of these approaches, you can download the list and save it to your phone or print it out to take shopping for some inspiration.

approach pdf foods nutrient profile % insulinogenic
well formulated ketogenic diet pdf foods profile 21
low carb pdf foods profile 34
plant based (diabetes friendly) pdf foods profile 56
weight loss and insulin resistance pdf foods profile 59
low carb pescitarian pdf foods profile 61
the most nutrient dense foods pdf foods profile 67
plant-based pdf foods profile 68
plant based (without ND) profile 73

Simply switching to a plant-based nutritional approach will leave you with 73% of your diet requiring insulin to metabolise.  The diabetes-friendly plant-based approach will be an improvement, but a low-carb or ketogenic diet may be better if your goal is stable blood glucose levels.

Another way to look at things is nutrient density.  You may have noticed the nutrient profiles shown above have a red dotted box.  If a particular nutritional approach provides two times the Daily Recommended Intake for all essential nutrients, then you would get a perfect score of 100%.  You can see below that the most nutritious foods below are pretty close to 100%.

By contrast, if we only focus on ‘plant-based foods’ nutritional outcome is not so flash.  Thinking only in terms of plant-based is not automatically nutrient dense.

I have sorted the various food lists in the table below based on their nutrient score.  My suggestion is to start at the top with the most nutrient dense foods and work your way down until you find an approach that suits your ethical framework or religious beliefs that will also enable you to stabilise your blood glucose levels (i.e. lower % insulinogenic calories).

approach score pdf foods nutrient profile % insulinogenic
the most nutrient dense foods 99.7% pdf foods profile 67
weight loss and insulin resistance 99.3% pdf foods profile 59
low carb pescitarian 94.5% pdf foods profile 61
low carbohydrate 81.0% pdf foods profile 34
plant based 78.0% pdf foods profile 68
plant based (diabetes friendly) 76.0% pdf foods profile 56
well formulated ketogenic diet 74.0% pdf foods profile 21
plant based (without ND) 57.0% profile 73

Summary

  • While many people chose exclusively plant-based foods, they are not necessarily a better dietary choice compared to a more varied diet.
  • Someone following an exclusively plant-based approach will require supplementation with vitamin B-12, vitamin D and omega 3s.
  • Fat is not necessarily good or bad. Swinging to macronutrient extremes will not lead to an optimal outcome.
  • Reducing the insulin load of your diet will help to normalise your blood sugar and insulin levels.
  • Ideally, you should aim to achieve the blood sugars of a metabolically healthy person while maximising nutrient density at the same time.

 

references

[1]https://www.ncbi.nlm.nih.gov/pubmed/25515001

[2]https://optimisingnutrition.com/2015/07/20/the-glucose-ketone-relationship/

[3]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC301822/

[4]https://www.quackwatch.org/01QuackeryRelatedTopics/DSH/coral2.html

[5]https://authoritynutrition.com/the-alkaline-diet-myth/

[6]https://optimisingnutrition.com/2017/03/19/micronutrients-at-macronutrient-extremes/

[7]https://socialblade.com/youtube/user/nutritionfactsorg

[8]https://nutritionfacts.org/donate/

[9]http://www.hsi.org/about/who_we_are/leadership/subject_experts/michael_greger.html

[10]https://www.facebook.com/mangomannutrition/videos/656469947843978/

[11]https://optimisingnutrition.com/2016/10/23/energy-density-food-hyper-palatability-and-reverse-engineering-optimal-foraging-theory/

[12]https://en.wikipedia.org/wiki/Optimal_foraging_theory

[13]http://www.hoajonline.com/obesity/2052-5966/2/2

[14]https://www.amazon.com/Dorito-Effect-Surprising-Truth-Flavor/dp/1476724237

[15]https://fineartamerica.com/featured/8-muscleart-marius-poser-classic-jake-hartz.html

[16]https://www.ncbi.nlm.nih.gov/pubmed/21241239

[17]https://optimisingnutrition.com/2015/08/10/insulin-dosing-options-for-type-1-diabetes/

[18]https://www.facebook.com/Type1Grit/

[19]https://optimisingnutrition.com/2015/07/20/the-glucose-ketone-relationship/

[20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC301822/

[21]http://online.liebertpub.com/doi/full/10.1089/met.2016.0108

[22]https://optimisingnutrition.com/2016/02/15/how-to-use-your-glucose-meter-as-a-fuel-gauge/

[23]http://ketotalk.com/2016/06/23-responding-to-the-paleo-mom-dr-sarah-ballantynes-claims-against-the-ketogenic-diet/

[24]http://jamanetwork.com/journals/jama/fullarticle/205916

[25]http://onlinelibrary.wiley.com/doi/10.1002/oby.21331/full

 

post udpated September 2017

 

 

protein sparing modified fast (PSMF) diet foods

The Protein Sparing Modified Fast (PSMF) is regarded by many to be the most effective way to lose body fat while preventing loss of lean muscle and rebound binge eating due to nutrient deficiencies.

First developed in the 1970s, the PSMF has seen various permutations in weight loss clinics and the bodybuilding community.

While the details vary depending on context, a PSMF generally defined as an energy-restricted diet with adequate protein while simultaneously limiting carbohydrates and fat.

Technically, the PSMF will be ketogenic because a significant amount of body fat will be burned due to a restricted energy intake.

Adequate protein is provided to prevent loss of lean muscle mass.  Supplements are often used to prevent nutrient deficiencies.

This article outlines the key principles of the PSMF that can be applied to weight loss or maintenance over the long-term.

Optimal nutrient dense foods are identified for someone looking for an aggressive weight cut (e.g. a bodybuilder leading up to a competition) as well as a hybrid low carb – PSMF approach for someone who is insulin resistant wanting to lose a significant amount of weight over a longer period.

2017-06-17 18.34.52

IMG_9149

IMG_9138

Medical applications of the PSMF

In the medical application of the PSMF patients obtain the majority of their energy from protein while keeping energy from carbohydrates and fat low.[1]

  • Protein levels are set at 1.2 to 1.5 g/kg of ideal body weight per day.  (For someone with 30% body fat wanting to get to 10% body fat this would be equivalent to 1.5 to 1.9g protein per kilogram of lean body mass or LBM.)
  • Carbohydrate intake is typically restricted to less than 20 to 50 g/day.
  • Additional dietary fat beyond what comes with lean protein sources is minimised.
  • Patients in the weight loss clinic setting are restricted to less than 800 kcal/day.

The Cleveland Clinic has done extensive research into the use of adequate protein low-calorie diets for aggressive weight loss with the following encouraging findings:[2] [3] [4]

  • patients are encouraged by the initial period of rapid weight loss which leads to a lower dropout rate;[5]
  • meal replacements in the form of commercial shakes or bars can be used, however learning to make meals from whole foods critical to developing habits that lay the foundation for long-term success;
  • the PSMF is effective for people with normal glycemic control as well as pre-diabetes or type 2 diabetes;[6]
  • people on a whole food-based PSMF are significantly less hungry and preoccupied with eating compared to those on a liquid-formula based version of the PSMF; and
  • most of the weight lost during a PSMF is from fat tissue rather than muscle.[7]

Adherence to a very-low-calorie, ketogenic PSMF program results in major short-term health benefits for obese patients with type 2 diabetes. These benefits include significant weight loss, often more than 18kg, within 6 months. 

In addition, significant improvements in fasting glucose and haemoglobin A1c levels are linked to the caloric and carbohydrate restriction of the PSMF.

Insulin resistance was also attenuated, with possible partial restoration of pancreatic beta-cell capacity.[8] [9]

Body building applications

Lyle McDonald reinvented the PSMF in body building community with his 2005 Rapid Fat Loss Handbook.

McDonald details how someone can individualise the PSMF based on their goals and context.

  • Someone who is already very lean and undertaking heavy weight training will need higher levels of protein.
  • Someone who isn’t yet lean may do better with a less aggressive approach over a longer period.
  • McDonald’s recommended protein intake ranges from 2.2g/kg LBM to 4.4g/kg LBM!
  • Unlimited green leafy fibrous veggies are strongly encouraged as they are filling and provide the vitamins and minerals with minimal calories.
  • McDonald also recommends supplementing with a good multivitamin, sodium potassium, magnesium, taurine, calcium and fish oil.
  • A PSMF is typically not a long-term proposition due to nutrient deficiencies.

KetoGains’ Luis Villasenor added:

McDonald’s recommendations seem “massive” to most people due to the book being geared toward strength athletes who DO require more protein as they are effectively breaking it down when strength training. 

Bodybuilders who diet down to 4 – 5% bodyfat need an increased protein intake when preparing for a contest as their aim is to maintain as much as lean mass as possible; and for that, one needs protein and resistance exercise. 

With my clients, to avoid nutrient deficiencies, we use a “Ketogains PSMF” which adds 3-4 whole eggs a day, at least 150g spinach, plus other green veggies, and some avocado. The rest is lean sources of protein and more veggies, plus electrolytes.  This effectively puts the person in between 35 to 50g fats and 20g net carbs.  The rest of their energy comes from lean protein.

Protein drives satiety

The body actively defends loss of muscle mass by increasing appetite after periods of fasting or low protein consumption to ensure that muscle mass is retained.[10]

Conversely, the Protein Leverage Hypothesis (Simpson, 2005) suggests that we continue to eat food until we get enough protein for critical bodily functions.[11] [12]

“Protein generally increases satiety to a greater extent than carbohydrate or fat and may facilitate a reduction in energy consumption under ad libitum dietary conditions.”[13] [14]

If we eat lower protein foods, we may end up consuming more energy to obtain our adequate protein.   Conversely, we can ‘hack’ our appetite by prioritising adequate protein while minimising energy from carbohydrate and fat.

  • Minimum carbohydrate requirement: While there is a need for the vitamins and minerals that are often packaged with carbohydrate containing foods (i.e. vegetables), there is indeed no such thing as an essential carbohydrate.
  • Minimum fat requirement: Most people have plenty of body fat stores that they can draw on and hence do not have an immediate need for dietary fat other than the essential Omega 3 fatty acids.

So, theoretically, if we get adequate protein as well as vitamins, minerals, the essential fatty acids can go a long way to providing everything that we need for long-term survival with less energy which is really the holy grail of weight loss and long-term maintenance.

Thermic effect of food

The other advantage of consuming a higher protein diet is increased thermogenesis (i.e. the energy lost in the process of converting food into energy).  The thermic effect (or specific dynamic action) is 5 to 15% for carbohydrates and fat and 20 to 35% for protein.[15]

The thermic effect of food is illustrated nicely by these images from Physioqonomics.[16]  We lose a lot more calories metabolising protein compared to fat or carbohydrates.

While we can convert protein to glucose (i.e. gluconeogenesis), it is really hard, and our body doesn’t like to do unless it has to.[17]

Satiety typically kicks in quickly once we have had adequate protein and we go in search of fat or carbs which are easier to convert to energy.  Just think, you can only eat so much steak, but you always have a ‘dessert stomach’, even after a big meal.

While there is much debate over the “metabolic advantage” of fat vs. carbohydrates with claims that we can eat more calories of fat than carbs, there is actually an advantage’ when it comes to how many calories of protein we eat versus how much we can convert to energy.

Should you just eat the highest protein foods?

So, the obvious question is:

What should I eat on a PSMF?

The table below lists the foods with the highest protein content as a percentage of energy.  These foods may be useful if you are looking to boost your protein intake.

food % protein
cod 92%
haddock 92%
white fish 92%
orange roughy (fish) 92%
crab 91%
lobster 91%
egg white 91%
mozzarella cheese (non-fat) 90%
pollock 90%
protein powder (whey) 89%
turkey breast (fat-free) 88%
halibut 86%
crayfish 86%
whiting 86%
rockfish 86%
molluscs 86%
veal 84%
perch 81%
shrimp 81%
trout 81%
chicken breast 79%
lean beef 79%
whey protein concentrate (WPC) 78%
octopus 77%
ground beef 76%
pork chop 75%
flounder 74%
beef tripe 74%
pork shoulder 74%
scallop 74%
leg ham 74%
sirloin steak 73%
ham (lean only) 73%
beef heart 73%
turkey (skinless) 72%
clam 72%
turkey gizzard 72%
top round steak (fat trimmed) 72%
lamb kidney 71%
beef heart 70%
beef kidney 70%

I have summarised these in this image for easy reference.

The problem with a very high protein diet

But wait!

While you may be getting plenty of essential amino acids if you focus purely on high protein foods, there is a good chance that you may not be getting all the vitamins and minerals you need.

As shown in the chart below, there is a strong relationship between protein and nutrient density.  However, if we just focus on high protein foods, we may still end up missing out on the harder to find vitamins and minerals.[18]

The chart below shows the micronutrients provided by the top 10% of the foods in the USDA database when sorted for maximum protein content.

Now imagine, that rather than getting 2000 calories, we are getting only 800 or 400 calories during long-term fasting or extreme dieting.  We have a higher chance of becoming deficient in many key nutrients which may in turn increase appetite and drive us to eat more than we would like to.

Ensuring you are getting adequate micronutrients is a key component to long-term success in weight loss and maintenance.  

In the Rapid Fat Loss Handbook McDonald mentions ‘The Last Chance Diet’ which was popular in the 1970s and 80s.  It was essentially a PSMF centred around liquid nutrition which led to the death of a number of devotees due to some fatal flaws.[19] [20]

First, they picked the cheapest protein source available, collagen; a protein that provides essentially zero nutrition to the body.  Second, they provided zero supplemental vitamins and minerals (some of which would have been obtained if the dieters had been eating whole foods in the first place). This caused a couple of problems including cardiac heart loss (from the total lack of protein) and arrhythmias from the lack of minerals.

Basically, the problem wasn’t with the approach so much as with the food choices.

PSMF’s based around whole foods (which provide high quality proteins as well as vitamins and minerals) and with adequate mineral supplementation have shown no such problems.[21]

Bruce Ames’ Triage Theory

Nutrient density becomes even more important when we consciously try to limit our energy intake.

Attaining adequate micronutrients can help to mitigate metabolic/mitochondrial slow down and adaption to the severe calorie deficit.  If we are getting the range of micronutrients we need, the body is more likely to keep on feasting on our own excess fat stores without reacting like there is a famine and holding onto our excess fat stores.

Similar to the protein leverage hypothesis, it seems if we provide the body with low nutrient density food it is driven to consume more energy to ensure that it gets the nutrients it needs.

I get some comments in response to the Nutrient Optimiser analysis suggesting that the Daily Recommended Intakes (DRI) for various micronutrients are excessive because an individual person has done fine on a diet per for a period of time with a less than optimal nutrient profile.

While we can argue that the some of the DRIs for various nutrients are overly conservative, you also don’t have to look too far to find people that argue that we need multiple times the DRI for another particular nutrient to optimise our health and longevity.

I don’t think we need to worry about precisely meeting the daily recommended intake for every single micronutrient every single day.  There is no diet that meets the daily recommended intake for every nutrient without overdoing others.  I think a healthy well-balanced diet will achieve the DRI for the majority of the essential micronutrients most of the time.

More research is required to understand whether our requirements for different nutrients change depending on our diet (e.g. how much less vitamin C do we need if we are not consuming as much glucose) and how much more bioavailable nutrients are from plants versus animals.

However, if you are an order of magnitude under the DRI for a handful of nutrients, perhaps you should consider focussing on foods that contain that contain higher levels of that cluster of nutrients.  If you are an order of magnitude over the DRI for a particular group of nutrients you don’t need to prioritise foods that contain those nutrients.

Bruce Ames’ sobering Triage Theory suggests that if we are low in critical nutrients, the body will prioritise those nutrients for functions essential to short term survival rather than longevity and preventing the diseases of ageing (e.g. cancer, heart disease, Parkinson’s, Alzheimer’s, etc.).

“The triage theory posits that some functions of micronutrients (the approximately 40 essential vitamins, minerals, fatty acids, and amino acids) are restricted during shortage and that functions required for short-term survival take precedence over those that are less essential.  Insidious changes accumulate as a consequence of restriction, which increases the risk of diseases of ageing.”[22] [23]

So, while we might do OK with poor nutrition for a period of time, we will probably do better if we obtain a solid amount of all the essential nutrients.  Ideally, we would get these nutrients from whole foods which are more likely to contain all the non-essential but also beneficial vitamins and minerals that we don’t track.

Low energy density

Another way to maximise nutrient density and prioritise protein at the same time is to reduce the energy density of the food we eat.

As shown in the chart below there is a relationship between the harder to find nutrients and energy density.[24]  While fat is a great fuel source and should not be feared or avoided, refined high-fat foods do not typically contain high levels of the harder to find vitamins and minerals that we need to thrive.  Foods with more fibre and water are also more filling and are more difficult to overeat and will lead to increased short term satiety.

If we prioritise adequate protein while minimising fat and carbohydrates we make up the deficit from our own body fat stores. Hence there is no need to prioritise dietary fat.

The nutrient dense adequate protein diet

So, to recap:

  1. getting adequate protein is important, especially if we are fasting or restricting energy intake, and
  2. not getting adequate nutrients is potentially dangerous and possibly the fatal flaw of the PSMF.

We can use the Nutrient Optimiser to prioritise foods with the nutrients we want to obtain more of.   Listed below are the 20 nutrients that have been prioritised in the following list of prioritised foods.

  1. Alpha-linolenic acid
  2. EPA + DHA
  3. Vitamin E
  4. Vitamin D
  5. Choline
  6. Calcium
  7. Magnesium
  8. Potassium
  9. Thiamine
  10. Phosphorus
  11. Pantothenic acid
  12. Manganese
  13. Folate
  14. Zinc
  15. Niacin
  16. Riboflavin
  17. Valine
  18. Selenium
  19. Leucine
  20. Tyrosine

Prioritising amino acids is usually unnecessary because maximising vitamins and minerals generally leads to more than adequate protein.   However, in a PSMF where we are severely limiting energy we want to increase protein as well (hence valine, leucine and tyrosine have been included).  As well as nutrient density, we have also prioritised low energy density foods in the multicriteria analysis.

The chart below shows the resultant micro nutrient profile achieved if we ate 2000 calories per day of these foods.  In the chart above we saw that if we just focus on protein, we will not be meeting the DRI for eleven nutrients.  However, when we focus on nutrient density, we get adequate quantities of all nutrients other than the Omega 3 fatty acid alpha-linolenic acid.

The chart below shows the same foods if we only ate 600 calories per day rather than 2000.  Even with these highly nutrient dense foods, we miss the DRI for eight of the essential nutrients.  Hence, we may still benefit from supplementing with Omega 3, vitamin D, calcium, magnesium and potassium.   The nutrients provided by an energy restricted diet without also prioritising nutrient density would be much worse.

It’s not hard to imagine that our ability to maintain a low energy intake and achieve sustained weight loss is likely related to getting adequate levels of the various essential micronutrients without having to over consume energy.  Conversely, a nutrient poor diet will likely drive us to consume excess energy which will lead to obesity.

Best foods for a PSMF

The tables below summarise highest ranking 10% of foods in the USDA database when we prioritise for high nutrient density and low energy density.

Also included in the tables are:

  • the nutrient density score (based on the 20 nutrients listed above),
  • energy density, and
  • the MCA which is the overall ranking from the multi criteria analysis.

Compared to the highest protein food listed above which are 80% protein, these foods work out to be 59% protein, 20% fat, 13% net carbs and 8% fibre.  While this may seem high, as we will see in the ‘calorie math’ section below, it becomes more reasonable once we account for the energy from body fat.

Vegetables

It would be hard to imagine getting fat by overeating the vegetables listed below.

Maximising your intake of these vegetables will ensure you are getting adequate vitamins and minerals and hence maximise your chance of long-term success.

While these vegetables have a very high nutrient density score (ND) in terms of nutrients per calorie, they also have a low energy density which means you need to eat a lot of them to get the nutrients you need.

The downside of vegetables is that they can be expensive and take time to prepare fresh.

food % protein ND calories/100g MCA
watercress 60%  25  11  3.1
spinach 41%  23  23  2.9
seaweed (laver) 50%  22  35  2.7
asparagus 34%  21  22  2.7
basil 44%  20  23  2.5
endive 25%  19  17  2.5
white mushroom 43%  19  22  2.4
brown mushrooms 36%  18  22  2.4
portabella mushrooms 36%  18  29  2.4
Chinese cabbage 42%  17  12  2.3
lettuce 30%  16  15  2.2
coriander 31%  16  23  2.1
chicory greens 24%  16  23  2.1
alfalfa 52%  16  23  2.1
spirulina 64%  16  26  2.1
chard 30%  15  19  2.1
zucchini 24%  15  17  2.1
seaweed (wakame) 22%  15  45  2.0
parsley 27%  15  36  2.0
escarole 25%  15  19  2.0
okra 27%  15  22  2.0
beet greens 32%  14  22  2.0
shiitake mushroom 29%  15  39  2.0
turnip greens 36%  14  29  1.9
chives 35%  14  30  1.9
broccoli 23%  14  35  1.8
mung beans 35%  13  19  1.8
arugula 33%  12  25  1.7
dill 27%  12  43  1.7
cauliflower 26%  12  25  1.7
celery 16%  11  18  1.6
summer squash 18%  10  19  1.5
seaweed (kelp) 13%  11  43  1.5
yeast extract spread 52%  12  185  1.5
radicchio 22%  9  23  1.4
pickles 14%  9  12  1.4
cucumber 14%  9  12  1.4
mustard greens 34%  9  27  1.4
peas 26%  9  42  1.4
snap beans 18%  9  15  1.4
collards 27%  9  33  1.3
cabbage 18%  8  23  1.3
soybeans (sprouted) 34%  8  81  1.2
onions 19%  7  32  1.2
pumpkin 12%  7  20  1.2
kale 23%  7  28  1.2
radishes 16%  7  16  1.2
banana pepper 21%  7  27  1.2
bamboo shoots 43%  7  11  1.2
Brussel sprouts 28%  7  42  1.1
edamame 37%  8  121  1.1
artichokes 23%  6  47  1.1
sauerkraut 17%  5  19  1.0
red peppers 13%  6  31  1.0
eggplant 13%  5  25  1.0
chayote 9%  5  24  1.0

Animal products

These animal products are both nutrient dense and have a low energy density compared to fattier cuts of meat.  While the nutrient density scores are not as high as for the vegetables, the energy density is higher so you will be able to get more nutrients in using these foods.

food % protein ND calories/100g MCA
lamb kidney 71%  19  112  2.2
chicken liver 62%  19  172  2.2
beef liver 63%  18  175  2.1
veal liver 61%  18  192  2.0
lamb liver 61%  17  168  2.0
turkey liver 59%  17  189  2.0
ham (lean only) 73%  16  113  1.9
pork liver 66%  16  165  1.9
beef kidney 70%  15  157  1.7
chicken breast 79%  13  148  1.6
pork chop 75%  13  172  1.5
veal 84%  12  151  1.5
pork shoulder 74%  12  162  1.4
lean beef 79%  11  149  1.4
leg ham 74%  11  165  1.4
ground pork 69%  11  185  1.4
turkey heart 60%  11  174  1.3
lamb heart 65%  11  161  1.3
beef tripe 74%  9  103  1.3
ground beef 76%  10  144  1.2
sirloin steak 73%  10  177  1.2
beef heart 70%  10  179  1.2
turkey meat 66%  10  158  1.2
turkey drumstick 66%  10  158  1.2
bison 69%  9  171  1.1
chicken liver pate 27%  9  201  1.1
turkey gizzard 72%  8  155  1.1
lamb sweetbread 59%  8  144  1.0
chicken drumstick 62%  8  149  1.0
veal loin 63%  8  175  1.0
roast pork 53%  8  199  1.0

Seafood

Omega 3 fats (EPA, DHA and ALA) are essential and harder to get so you should prioritise fish in your nutrient dense PSMF.

food % protein ND calories/100g MCA
crab 91%  20  83  2.4
fish roe 58%  19  143  2.2
crayfish 86%  18  82  2.2
lobster 91%  18  89  2.2
halibut 86%  17  111  2.1
pollock 90%  16  111  1.9
salmon 68%  16  156  1.9
rockfish 86%  15  109  1.9
flounder 74%  14  86  1.8
oyster 46%  14  102  1.8
shrimp 81%  14  119  1.8
haddock 92%  14  116  1.8
perch 81%  14  96  1.7
cod 92%  16  290  1.7
sturgeon 64%  14  135  1.7
whiting 86%  13  116  1.6
trout 59%  13  168  1.6
octopus 77%  13  164  1.5
white fish 92%  12  108  1.5
anchovy 57%  13  210  1.5
clam 72%  12  142  1.5
tuna 68%  11  184  1.3
scallop 74%  9  111  1.3
caviar 36%  11  264  1.2
orange roughy 92%  8  105  1.2
sardine 49%  10  208  1.2
molluscs 86%  8  130  1.1

Egg and dairy

Eggs are nutritious.  Only a couple of low fat dairy products make the list.  Higher fat foods such as butter and cream need to be minimised on a PSMF to allow your body to use the fat from your butt and your belly.

food % protein ND calories/100g MCA
cream cheese (low fat) 61%  11  105  1.5
whole egg 36%  9  143  1.2
egg white 91%  7  52  1.1
cottage cheese (low fat) 51%  7  81  1.1

These nutrient dense PSMF foods are summarised in this image for easy reference.

Calorie math

To make this a little more practical let’s look at some calorie math using a hypothetical scenario.

Let’s say Super Ted is looking to get shredded for the Ketogains conference in two weeks where he wants to pose for shirtless but also wants to stay strong and to win the arm wrestle and beat the reigning champion, Mighty Mouse.

Super Ted currently weighs 160 lbs or 73kg and has 10% body fat.  His maintenance energy intake is 2336 cal/per day.

While getting the majority of your energy intake from protein might seem excessive…

… it’s not so dramatic when you also take into account the body fat being burned.

Between the 8% dietary fat (8%) his body fat stores (60%) Super Ted will be getting a ketogenic level of 68% of his energy from fat while also adequate protein to maintain his muscles and enough carb containing vegetables to get the vitamins and minerals that are also critical to his long-term success.

The details of the calorie math are shown below.  Once you take the energy deficit into account Super Ted is consuming 2.2g/kg LBM.

body weight (kg) 73
body weight (lbs) 160
body fat (%) 10%
lean body mass (kg) 62
maintenance (cal) 2336
deficit 60%
diet (calories) 934
protein (% diet) 59%
fat (% diet) 20%
net carbs (% diet) 13%
diet protein (g) 138
dietary fat (g) 21
body fat (g) 156
body fat (kg/week) 1.1
net carbs (g) 30
fibre (g) 19
protein (% energy burned) 24%
dietary fat (% energy burned) 8%
carbohydrate (% energy burned) 5%
protein (g/kg LBM) 2.2

These calculations assume that Super Ted’s insulin levels are going to be low enough to allow him to yield a significant amount of energy from his body fat stores.   Similar to fasting, it may take a few days before glycogen stores to be depleted enough for his insulin levels to drop which will allow his fat stores to more easily flow out of storage.  

These calculations also do not account for the metabolic slowdown that you will get during long term energy restriction.  This is the same with any way of eating that consciously restricts energy intake.  However, I think if we can minimise nutrient deficiencies we will have a better chance of avoiding an increase in which could drive our body to seek out the missing nutrients that it is not getting enough of.  

When you look at his Nutrient Optimiser analysis, you see that Ted Naiman (aka Super Ted) is actually consuming 2.4g/kg LBM.

Meanwhile, Luis Villasenor (aka Mighty Mouse) is also consuming protein at 2.4g/kg LBM during his PSMF.  Luis says his regular protein intake is around 140g increases this up to 180g during a strict PSMF.

Insulin resistant long-term fat loss scenario

For most of us, such an aggressive fat loss approach might be hard to maintain long-term.  So, let’s consider another scenario with another hypothetical character.

Introducing…  Big Ted.

As you can see, Big Ted doesn’t post shirtless for photos on the internet.

At 110kg and 30% body fat Big Ted is far from shredded.

Big Ted is also pre diabetic.

His doctor has warned him that if he doesn’t lose a significant amount of weight he will need to take Metformin and then insulin before too long.

Big Ted is motivated to drop a large amount of weight with perhaps a calorie deficit of 30% which will take him about 30 weeks to get to his goal weight of 90kg.

We can refine Big Ted’s PSMF approach given that his circumstances and goals are different from Super Ted’s.

Nutrients to prioritise

Given Big Ted is not looking to be as dramatically calorie restricted we only need to prioritise the following nutrients.

  1. Alpha-linolenic acid
  2. EPA + DHA
  3. Choline
  4. Vitamin D
  5. Vitamin E
  6. Calcium
  7. Magnesium
  8. Potassium
  9. Phosphorus
  10. Zinc

Although amino acids are not prioritised the resultant list of foods is still 36% protein, 30% fat and 20% net carbs.

Rather than just prioritising nutrient density and energy density, this scenario also prioritises a lower insulin load given Big Ted’s looming pre diabetes situation.

This is basically a hybrid between a PSMF and a low carb diet.

The chart below shows the nutrient profile of these foods once we take a 30% energy deficit into account.  Big Ted will be meeting the DRI for all his nutrient other than Omega 3s which he may need to supplement.

Calorie math

The charts below show the energy consumed and energy burned.

There is a significant amount of fibre which will not be metabolised for energy but rather feed his gut bacteria.  There is still a solid amount of net carbs from veggies. However, there is no sugars or processed grains to be seen, so they’re not about to boost his insulin or send him on a blood sugar roller coaster.

Once his body fat loss is accounted for, half of Big Ted’s energy expenditure is still coming from fat.

Although we didn’t prioritise amino acids we still get a solid 2.2g protein per kilogram LBM.

body weight (kg) 110
body weight (lbs) 242
body fat (%) 30%
lean body mass (kg) 77
maintenance (cal) 3000
deficit 30%
diet (cals) 1875
protein (% diet) 36%
fat (% diet) 30%
net carbs (% diet) 20%
fibre (%) 14%
diet protein (g) 169
dietary fat (g) 63
body fat (g) 100
body fat (kg/week) 0.7
net carbs (g) 94
fibre (g) 66
protein 23%
dietary fat 19%
carbohydrate 13%
protein (g/kg LBM) 2.2

Optimal foods for Big Ted are listed below.

Vegetables

food % protein ND calories/100g MCA
endive 25% 11 17 2.5
chicory greens 24% 11 23 2.4
coriander 31% 10 23 2.2
escarole 25% 9 19 2.1
spinach 41% 12 23 2.1
basil 44% 11 23 2.0
alfalfa 52% 7 23 2.0
zucchini 24% 9 17 1.9
chard 30% 11 19 1.9
arugula 33% 10 25 1.9
beet greens 32% 8 22 1.9
mustard greens 34% 8 27 1.8
watercress 60% 12 11 1.7
asparagus 34% 9 22 1.7
parsley 27% 9 36 1.7
Chinese cabbage 42% 9 12 1.6
curry powder 14% 6 325 1.6
collards 27% 7 33 1.6
summer squash 18% 8 19 1.6
lettuce 30% 8 15 1.6
paprika 15% 7 282 1.6
turnip greens 36% 7 29 1.5
broccoli 23% 8 35 1.5
cloves 6% 7 274 1.4
sauerkraut 17% 6 19 1.4
banana pepper 21% 5 27 1.4
okra 27% 7 22 1.4
pickles 14% 5 12 1.4
cucumber 14% 5 12 1.4
chives 35% 7 30 1.3
celery 16% 7 18 1.3
brown mushrooms 36% 10 22 1.3
sage 11% 5 315 1.3
artichokes 23% 6 47 1.3
marjoram 14% 5 271 1.3
thyme 10% 6 276 1.3
cauliflower 26% 6 25 1.3
edamame 37% 5 121 1.2
portabella mushrooms 36% 7 29 1.2
radishes 16% 5 16 1.2
eggplant 13% 4 25 1.2
cabbage 18% 6 23 1.2
blackberries 11% 3 43 1.2
shiitake mushroom 29% 6 39 1.1
radicchio 22% 8 23 1.1
jalapeno peppers 12% 3 27 1.1
caraway seed 19% 4 333 1.1
chayote 9% 4 24 1.1
rhubarb 15% 5 21 1.0
avocado 5% -0 160 1.0
snap beans 18% 6 15 1.0
red peppers 13% 3 31 1.0
olives 3% -1 145 1.0
turnips 26% 5 21 1.0
white mushroom 43% 7 22 1.0
dill 27% 6 43 1.0
poppy seeds 13% 3 525 1.0
kale 23% 5 28 0.9
seaweed (kelp) 13% 8 43 0.9
raspberries 8% 1 52 0.9
seaweed (laver) 50% 8 35 0.9
soybeans (sprouted) 34% 4 81 0.9
seaweed (wakame) 22% 8 45 0.9
Brussel sprouts 28% 4 42 0.9
celery flakes 14% 6 319 0.9
cumin 16% 4 375 0.8
bamboo shoots 43% 3 11 0.8
carrots 6% 3 37 0.8
onions 19% 5 32 0.8
carrots 9% 5 23 0.8
dill seed 15% 3 305 0.7
mustard seed 19% 2 508 0.7

Animal products

food % protein ND calories/100g MCA
beef brains 32% 5 151 1.5
turkey ham 63% 4 124 1.0
lamb brains 36% 2 154 1.0
lamb sweetbread 59% 4 144 0.9
turkey (skinless) 72% 3 170 0.8
turkey liver 59% 4 189 0.8
ground turkey 39% 2 258 0.8
lamb liver 61% 4 168 0.8
turkey drumstick (with skin) 50% 1 221 0.8
turkey bacon 29% 0 226 0.8
headcheese 36% –       0 157 0.8
lamb kidney 71% 4 112 0.8
turkey heart 60% 3 174 0.8
sweetbread 16% –       1 318 0.7

Seafood

food % protein ND calories/100g MCA
fish roe 58% 9 143 1.6
oyster 46% 10 102 1.5
mackerel 25% 4 305 1.4
caviar 36% 6 264 1.4
molluscs 86% 8 130 1.4
crab 91% 10 83 1.3
sardine 49% 6 208 1.2
flounder 74% 7 86 1.2
trout 59% 6 168 1.2
cisco 38% 4 177 1.2
sturgeon 64% 6 135 1.2
crayfish 86% 8 82 1.2
salmon 68% 7 156 1.2
lobster 91% 9 89 1.1
halibut 86% 8 111 1.1
anchovy 57% 5 210 1.0
perch 81% 7 96 1.0
herring 47% 4 217 1.0
rockfish 86% 7 109 1.0
pollock 90% 7 111 1.0
cod 92% 8 290 0.9
shrimp 81% 7 119 0.9
whiting 86% 6 116 0.8
white fish 92% 6 108 0.8
haddock 92% 6 116 0.7

Egg

food % protein ND calories/100g MCA
egg yolk 21% 4 275 1.4
whole egg 36% 4 143 1.3

Nut sand seeds

food % protein ND calories/100g MCA
tofu 43% 3 83 1.0
sunflower seeds 13% 2 546 0.9
pumpkin seeds 20% 3 559 0.8
flax seed 13% 1 534 0.8
almonds 13% 2 607 0.7

This image below summarises these foods for easy reference.

The nutrient profile of these foods is also excellent.  These foods will help Big Ted to minimise his chance of developing nutrient deficiencies which may lead to rebound binge eating and derail his long term weight loss efforts.

How often should I eat on a PSMF?

Big Ted is fond of intermittent fasting.  He finds it easier to not eat for a day or two and then eat to satiety rather than trying to count calories or restrict energy.

Meanwhile, Super Ted likes to eat two meals per day which save him time and helps him not overeat.

Personally, I don’t think it matters exactly when you eat as long as you stick to the foods that align best with your goals.  Recent research suggests that in the fasted state we can use up to 3.5 g/kg/day and digest up to 4.3 g/kg/day.[25]  This makes sense in an evolutionary context when there wouldn’t have been a regular supply of food but we would have needed to be able to use the food when we came across a big hunt after a long famine.

Either Super Ted or Big Ted could still utilise their required protein intake if they followed an alternate day fasting or 5:2 plan or indeed any other permutation of fasting.  What is important though is that they ensure that they stick to their nutrient dense diet when they break their fast rather than reaching for the more energy dense foods when they eat again.

How low can you go?

Hopefully, this article has given you some actionable principles:

  • During weight loss, you should ensure that you get adequate protein while fat and carbs can be limited to achieve the energy deficit required to suit your target rate of loss.
  • As well as protein intake, we should aim to maximise all micro nutrients (vitamins, minerals, essential fatty acids and amino acids) ideally using whole foods.
  • You will find it hard to obtain adequate vitamins, minerals and essential fatty acids at one extreme or the other of protein intake.

As discussed in the ‘How Much Protein is Too Much’ article I noted that the minimum intake of protein and minimum essential fats tally up to around 314 calories as shown in the table below.

If we could stick to this approach, we would have a massive and highly ketogenic 85% of our energy coming from our body fat.  However, you would be at an increased risk of inadequate vitamins, mineral and fatty acids with such a low energy intake.

macro DRI (g) DRI (calories) % energy
minimum protein 56 224 71%
essential fats 10 90 29%
total 66 314 100%

If you’re starving to death and only have lean protein available you might call it “rabbit starvation”.  However, if you still have plenty of body fat to burn it’s a PSMF.

#context matters


PSMFs for aggressive weight loss in a medical context generally aim for around 800 calories per day.

Lyle McDonald suggests that people following a PSMF for aggressive weight loss over a short period (e.g. cutting in the lead up to a bodybuilding show) might be eating between 400 and 800 calories per day.

Each person needs to find the ideal approach that they can live with for the long-term.

IMG_9148

img_9102

How to do a nutrient dense PSMF

  • Eat mostly foods from the lists below.  
    • The nutrient dense PSMF diet foods are ideal for aggressive short term weight loss (i.e. leading up to a bodybuilding comp).
    • The nutrient dense weight loss foods for insulin resistance may be more appropriate if you have more weight to lose over a longer period.
    • Minimum protein intake in a weight loss clinic setting is 1.2g/kg total body weight.
    • Appetite will likely drive you to eat more protein if you are working out.   2.4g/kg lean body mass is typical for someone lifting heavy.
    • The highest protein foodcan be used to increase protein intake if required.
    • Focusing on these foods will ensure you still get adequate protein as well as vitamins and minerals while minimising energy consumption.
    • Limit carbs to what comes with non-starch veggies (i.e. no processed grains or sugars).
    • Limit fat to what comes with the lean protein foods.
  • Don’t eat too much
    • It will be hard to overeat these high nutrient density low energy density foods.
    • You may not have to consciously limit your food intake if you can focus only eat these foods.
    • It may be beneficial to track or plan your energy intake to achieve your goals.
    • Ratchet down your energy intake until you achieve your desired rate of weight loss.
  • Lift heavy / exercise (optional)
    • Working out will help you to use the protein to build lean muscle and keep your metabolic rate up.
  • Repeat 

Noautomaticalttextavailable.

Noautomaticalttextavailable.

null

 

Summary

  • The protein sparing modified fast (PSMF) provides adequate levels of protein to support lean muscle mass while restricting energy from carbohydrates and fat.
  • Protein intakes vary widely depending on the goals and the level of energy restriction between.
  • Providing adequate nutrients, ideally from whole foods, is critical to long term weight loss and maintenance.
  • Just maximising protein may not provide optimal levels of vitamins and minerals. Therefore, it’s important to prioritise nutrient dense foods to improve your chances of long-term success.
  • While the PSMF is commonly used in weight loss clinics and in the bodybuilding community, the principle can also be applied in other situations.

 

References

[1] http://www.mdedge.com/ccjm/article/96116/diabetes/protein-sparing-modified-fast-obese-patients-type-2-diabetes-what-expect

[2] https://www.ncbi.nlm.nih.gov/pubmed/9149474

[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784653/ama

[4] https://www.ncbi.nlm.nih.gov/pubmed/4037162

[5] http://www.mdedge.com/ccjm/article/96116/diabetes/protein-sparing-modified-fast-obese-patients-type-2-diabetes-what-expect

[6] https://www.ncbi.nlm.nih.gov/pubmed/24513578

[7] http://www.mdedge.com/ccjm/article/96116/diabetes/protein-sparing-modified-fast-obese-patients-type-2-diabetes-what-expect

[8] https://www.dropbox.com/s/rjfyvfsovbg9fri/The%20protein-sparing%20modified%20fast%20for%20obese%20patients%20with%20type%202%20diabetes%20What%20to%20expect.pdf?dl=0

[9] http://www.mdedge.com/ccjm/article/96116/diabetes/protein-sparing-modified-fast-obese-patients-type-2-diabetes-what-expect

[10] http://www.nature.com/ejcn/journal/v71/n3/full/ejcn2016256a.html

[11] http://onlinelibrary.wiley.com/doi/10.1111/j.1467-789X.2005.00178.x/abstract

[12] https://www.dropbox.com/s/zej4razn4dn993y/protein%20leverage%20hypothesis%20-%20simpson2005.pdf?dl=0

[13] http://ajcn.nutrition.org/content/87/5/1558S.long

[14] https://www.ncbi.nlm.nih.gov/pubmed/15466943

[15] https://en.wikipedia.org/wiki/Specific_dynamic_action

[16] http://physiqonomics.com/calories-child-friendly-version/

[17] http://www.biologydiscussion.com/biochemistry/energy-production/specific-dynamic-action-factors-and-example-energy-production/43998

[18] https://optimisingnutrition.com/2017/05/27/is-there-a-relationship-between-macronutrients-and-diet-quality/

[19] http://www.dietsinreview.com/diets/last-chance-diet/

[20] https://www.amazon.com/Last-Chance-Diet-When-Everything-Failed/dp/0818402393

[21] http://www.bodyrecomposition.com/the-rapid-fat-loss-handbook/

[22] https://www.ncbi.nlm.nih.gov/pubmed/19692494

[23] http://ajcn.nutrition.org/content/90/4/889.full.pdf+html

[24] https://optimisingnutrition.com/2017/05/27/is-there-a-relationship-between-macronutrients-and-diet-quality/

[25] http://www.sciencedirect.com/science/article/pii/S0261561417302030

 

post updated August 2017

how much protein is too much?

Now that fat is out of the spotlight, the focus for many in low carb and vegan circles has turned to protein as the macronutrient that needs to be avoided for health, good blood sugar control and longevity.

At the same time there are still are plenty of ‘meat heads’ who say that their ‘brotein’ can do no wrong and you can’t get enough of it.

In the sea of conflicting opinions and advice, how do we determine the optimal amount of protein that will suit our situation, goals and needs?

How much protein do we need?

How much is too little protein?

How much protein is too much?

This is an intriguing, controversial and multifaceted discussion.

So hold on as I try to unpack the various perspectives!

Typical guidance

First, let’s look at the general recommendations for protein intake.

Lean body mass

Protein recommendations are often given in terms of grams per kilogram of lean body (LBM) where “LBM” is your current weight minus your fat mass.

Protein is required to support your muscles, not your fat.

You can use a DEXA scan, bioimpedance scale or pictures (like the ones below) to estimate your level of body fat (% BF) and then calculate your LBM using the following formula:

lean body mass (LBM) = body weight weight x (100% – %BF) / 100%. 

None of these methods are particularly accurate.  However, calculating your body fat levels or protein intake to a high degree of accuracy is not necessary for most people.

Absolute minimum protein requirement

According to Cahill’s starvation studies[1] we burn around 0.4g/kg LBM per day of protein via gluconeogenesis during long term starvation.

After we burn through the food in our stomach and then the glycogen stored in our liver and muscle, the body will turn to its own internal protein stores (i.e. muscles, organs etc) and, to a lesser extent, fat (glycerol backbone) to obtain glucose via gluconeogenesis.

The figure below shows that we use less protein the longer we go without food.  After a couple of days of no food, fat and ketones kick in to supply the energy deficit.

People with better insulin sensitivity may burn through less protein as they are able to access their body fat stores for energy more easily when they go without food.  However, people who are lean and insulin sensitive may have less body fat to burn before the body will turn to protein during fasting.  Hence, extended fasting is not typically recommended if you are super lean.

Gluconeogenesis peaks at around two days and decreases thereafter as insulin levels decrease  and ketones rise further.  While chronic muscle loss is bad news (sarcopenia), particularly in old age, short term gluconeogenesis and autophagy is not necessarily a bad thing as the body will ‘self eat’ and clean out the old and sick and superfluous parts of the body for fuel.

After a fast the body is primed and highly insulin sensitive and ready to build new muscle.   Fasting can actually be beneficial for gaining muscle provided that the refeed has adequate amounts of amino acids to support muscle growth.

Daily recommended protein intake

The Daily Recommended Intake (DRI) for protein is 0.84g/kg of body weight (BW) while the Estimated Average Requirement (EAR) is 0.68 g/kg BW.[2]

This minimum protein level is based on nitrogen balance studies that indicate that if healthy test subjects eat less than around 0.6 g/kg BW you will be losing muscle and be at risk of the various diseases of malnutrition and then factored up to 0.8 g/kg BW as a factor of safety.[3] [4] [5] [6] [7]

Keep in mind though that the DRI is a recommended minimum per day to prevent diseases related to protein deficiency.  This is not necessarily optimal.

More recent studies have indicated that higher quantities of protein may be necessary, particularly for older people.[8] [9] [10] [11] [12] [13]

Older people appear to require 1.0 to 1.3 g per kilogram of total body mass per day protein to optimize physical function, particularly whilst undertaking resistance exercise recommendations.[14]

As discussed in the article Is there any relationship between macronutrients and diet quality (micronutrients) it’s actually quite hard to achieve adequate levels of vitamins and minerals while also hitting these minimum DRI levels.

According to Simpson and Raubenheimer in Obesity: the protein leverage hypothesis (2005) people with diabetes may actually need to eat more protein to ensure that they have adequate levels to build lean muscle mass given that gluconeogenesis can be higher due to insulin resistance.

Keep in mind too that minimum protein recommendations are given in terms of total bodyweight, not lean body mass.  For someone with 30% body fat 0.8g/kg BW will convert to 1.1 g/kg LBM.

If you fast for a day or two you should consider compensating with more protein on your feasting days.  If you are fasting for fat loss there is no need to replace additional fat when you feast.

DRI for individual amino acids

If we dig a little deeper we see that there are also requirements for individual amino acids as shown in the table below.[15] [16]  Depending on what you’re eating you can be deficient in some amino acids while getting enough other amino acids.

 

Amino acid(s) mg per kg body weight mg per 70 kg mg per 100 kg
Histidine 10 700 1000
Isoleucine 20 1400 2000
Leucine 39 2730 3900
Lysine 30 2100 3000
Methionine Cysteine 10.4 + 4.1 (15 total) 1050 1500
Phenylalanine + Tyrosine 25 (total) 1750 2500
Threonine 15 1050 1500
Tryptophan 4 280 400
Valine 26 1820 2600

The Nutrient Optimiser reviews the individual amino acids to make sure they are all adequate.     People who are running close to the minimum DRI for protein overall are typically deficient in a handful of individual aminos.

cropped-2017-04-22-2

Typical protein intake

The average protein intake for the general western population is about 1.2 g/kg LBM or around 16% of calories.[17]  This is greater than the minimum required to maintain nitrogen balance in the figure above and the DRI values.

It seems that most people get enough protein without trying too hard.   However, what constitutes as “enough” protein will vary depending on whether you are going through puberty, weight lifting,a middle aged sedentary office worker or an elderly person in a nursing home.

Appetite is a strong drive that ensures that you don’t stop eating until you get enough protein.  Average protein intake seems to be consistent across cultures and time.[18]

Practical maximum protein intake

Recent research indicates that, when fasted, we can use up to 3.5g/kg/day and breakdown and metabolise up to 4.3g/kg/day.[19]  This makes sense in an evolutionary context where would be primed to use a lot of protein after going without and then making up for lost time after a successful hunt.

Rabbit starvation’ is said to occur when people only have lean protein available and just can’t get enough calories in because they are eating only lean protein.  However, I have seen people eat higher levels of protein in an energy excess situation when they are trying to gain weight (e.g. Andy Mant who is trying to gain size eating and muscle 4.4g/kg LBM or Bailan Jones who is a growing young man with type 1 diabetes at 5.0g/kg LBM).

From a pure calorie standpoint we could theoretically eat up to around 7g/kg LBM using very protein foods.   However, most people will struggle to eat more than 3.5g/kg LBM because protein is very satiating and it is hard to find protein containing foods that don’t come with substantial amounts of fat.

The chart below shows the nutrient score for the highest protein 10% of the foods in the USDA database.  What we can see is that high protein foods provide a ton of amino acids while lacking key vitamins and minerals.  This is not an optimally balanced diet at a micronutrient level.  Rather than worrying specifically about ‘too much protein’ I think it’s more useful to think in terms of getting the range of micronutrients you need without having to consume excess energy.

I think the real problem eating ‘too much protein’ is that once our protein goes too high we end up reducing the amount of vitamins, minerals and essential fatty acids that our food contains.  While it is important to get adequate amino acids, it is also important to get adequate vitamins, minerals and essential fatty acids.

It’s also worth keeping in mind that protein has a net acidic load that the body needs to balance to maintain acid/base homeostasis.  If we eat a lot of protein without adequate amount of alkalising minerals (e.g. potassium, magnesium, phosphorus and calcium) our kidney may struggle to maintain an optimal pH balance which can lead to low level metabolic acidosis in the long term.[20] [21]

How will you spend your “discretionary calories”?

I think it’s important to keep in mind that the DRIs for protein are a minimum to prevent disease and should not be treated as optimal targets or maximum values.  Finding the right balance of all the essential nutrients is quite a balancing act.

In this video Dr Donald Layman points out that if we targeted the minimum DRI for protein, carbs and fat we would end up with only eight hundred calories per day whereas, on average, we eat around 2300 calories per day.  Hence, there is a window of “discretionary calories” that we can chose how we fill to make up our daily energy requirements.

People in low carb circles are fond of saying ‘there is no such thing as an essential carbohydrate’.  So, once we cut the carbs out we are left with only 314 calories to meet our essential macronutrient requirements as shown in the table below.

macro DRI (g) DRI (calories) % energy
minimum protein 56 224 71%
Essential fats 10 90 29%
total 66 314 100%

Now this might be reasonable if we were minimising calories for weight loss (e.g. we could try to live on protein powder and Omega 3 capsules).  However, this this would be impossible to achieve with whole food.

Discretionary calories from body fat

The chart below shows the break up of energy sources if we were living on the minimum DRI for protein and essential fatty acids.  85% of our energy would be coming from our body fat stores.  This would be the ultimate protein sparing modified fast (PSMF) however there is a pretty good chance we would struggle to obtain adequate levels of vitamins and minerals from 300 calories.

Then once we reached our goal weight we would need to work out what we are going to fill the rest of our intake with to prevent drastic weight loss (and literally starving to death)?

From carbs

Another option is to fill the window of ‘discretionary calories’ with carbohydrates which would look like this.

macro DRI (g) DRI (cals) % energy
protein 56 224 10%
carbs 497 1986 86%
fats 10 90 4%
total 563 2300 100%

From protein

Filling your energy deficit with protein would be impossible in terms of available foods (even with protein powders which are only 80% protein) as well as the strong satiety that would kick in well before then.

macro DRI (g) DRI (cals) % energy
protein 545 2181 91%
carbs 7 29 5%
fats 10 90 4%
total 250 2300 100%

From fat

The other option is to fill the remaining energy deficit with dietary fat.  This looks like a therapeutic ketogenic macro ratios.  This will be difficult without consuming the majority of your energy intake from butter, cream and MCT oil.

macro DRI (g) DRI (cals) % energy
protein 56 224 10%
carbs 7 29 5%
fats 227 2047 85%
total 291 2300 100%

Optimising for micronutrients and insulin load

My suggestion is to look to fill your remaining energy requirements with foods that provide the micronutrients you need while keeping an eye on the insulin load of your diet.

Keeping your blood sugar and insulin levels down will help normalise appetite and access your own fat stores for fuel.

However, ensuring that you are getting the micronutrients you need will help you prevent nutrient cravings with less energy which will be ideal for optimising longevity, insulin resistance and blood sugar levels.

How much protein are real people actually eating?

Protein in real life varies significantly, as evidenced by the fifty or so people on whom I have run the Nutrient Optimiser analysis.   As you can see in the table below, protein intake in real life is highly variable.  The average protein intake amongst these people who are generally following a low carb diet is 2.1g/kg LBM.

Name score protein (g/kg LBM) protein (%) fat (%) fibre (%) net carbs (%)
Rhonda Patrick 82% 2.5 17% 57% 10% 15%
Briana Theroux-Hulsey 79% 3.5 29% 21% 15% 35%
David Houghton 77% 0.6 17% 2% 21% 60%
Andy Mant v3 77% 4.4 27% 53% 5% 15%
Alber Van Zyl 75% 1 15% 77% 2% 6%
Alma Fuente 75% 5.3 27% 60% 7% 6%
Mike Berta 74% 2.1 31% 58% 4% 7%
Alex Leaf 74% 3.3 33% 26% 10% 32%
Alex Ferrari 74% 2 17% 54% 6% 24%
Deb Pinsky Lambert v2 72% 1.2 31% 61% 3% 6%
Luis Villasenor 72% 2.4 43% 48% 3% 5%
Gayle Louise 71% 2.4 40% 49% 4% 7%
Ted Naiman 70% 2.4 24% 64% 5% 7%
Andy Mant v2 70% 3 26% 54% 6% 15%
Robin Reyes v3 69% 1.6 18% 67% 6% 8%
Ruth Jamieson v2 66% 1.6 18% 67% 6% 8%
Amy 65% 3.3 41% 57% 0 1%
Paul Burgess 64% 1.9 28% 46% 6% 19%
Chris Hobson 63% 2.3 27% 63% 3% 8%
Ingunn Lovik 62% 1.5 21% 70% 1% 8%
Sophia Thom 62% 1.1 24% 65% 4% 7%
James DiNicolantonio 62% 3.3 26% 53% 5% 16%
Franziska Spritzler 61% 2.3 27% 55% 10% 8%
Sarah Koenck 58% 2.2 14% 77% 4% 6%
Ruth Jamieson v1 57% 1.4 19% 65% 7% 9%
Maria Fornarciari 52% 1.6 30% 61% 3% 6%
Matija Mlakar 50% 2.1 23% 49% 11% 17%
Nicole Jacobi 48% 2.8 32% 60% 3% 6%
Graeme Monteith 48% 2.6 18% 67% 5% 10%
Dave Knowles 46% 2.4 31% 63% 2% 3%
John Robertson 46% 1.4 16% 59% 4% 21%
Leah Williamson 44% 1.8 19% 75% 2% 3%
Nicole Ricine 43% 2.1 18% 79% 1% 2%
Balin Jones 43% 5 26% 66% 3% 5%
Kevin Tunis 37% 1.2 17% 76%% 1%% 7%%
Andy Mant v1 34% 3.7 35% 54% 2% 9%
George 34% 0.8 9% 69% 9% 12%
Robin Reyes v2 32% 1.6 21% 59% 4% 15%
Lorraine Ayre 30% 1.3 19% 64% 5% 12%
Terry Palmer 29% 1.5 25% 62% 5% 8%
Paul Stansel 28% 1.5 18% 77% 2% 3%
Gigi Giodani 26% 1.6 15% 81% 1% 2%
John Kerr 25% 0.7 11% 84% 2% 3%
Robin Reyes v1 23% 1.1 13% 50% 2% 35%
Bacon Man 22% 2.6 30% 69% 0% 1%
Patrick Butts v1 21% 0.8 18% 73% 4% 5%
Patrick Butts v2 20% 1.4 26% 66% 3% 6%
Harry Nguyen 20% 2.3 20% 72% 4% 4%
average 53% 2.1 24% 60% 5% 11%
25th percentile 34% 1.4 18% 54% 3% 6%
75th percentile 70% 2.5 28% 68% 6% 15%

I have also included the 25th and 75th percentiles, which indicate that half of these people were eating between:

  • 1.4 and 2.5g/kg LBM protein per day,
  • 18 and 29% energy from protein,
  • 54 and 67% energy from fat, and
  • 6 and 15% energy from net carbs.

Very few of these people are consuming anywhere near the minimum DRI levels for protein.  And the people who are the closest have some of the poorest nutrient scores.

Protein scales with activity levels

Unfortunately, simply eating protein doesn’t build muscles.  You also need to exercise to use the protein to build lean body mass (i.e. muscles).  If you’re active, you’ll need more protein for growth and repair of muscles.  If you’re sedentary you’ll need less.

There appears to be an upper limit to how much protein can be used for muscle protein synthesis (i.e. to grow and repair your muscles).  If you’re active, then it’s likely that your appetite for protein will increase to make sure you get these higher levels of protein to prevent muscle loss.

As shown in the figure below from Effects of Exercise on Dietary Protein Requirements (Lemon, 1999):[22] [23]

  • a strength athlete won’t stimulate more muscle protein synthesis by eating more than about 1.8 g/kg LBM;
  • an endurance athlete won’t trigger more muscle protein synthesis with more than around 1.4 g/kg LBM; and
  • someone who is sedentary won’t trigger more muscle protein synthesis with more than around 0.9 g/kg LBM.

So, if you are wanting to minimise energy intake while still building muscle you could use these values as a minimum protein intake.

is protein really a good source of energy?

We typically think in terms of the macronutrients, carbs, fat and protein as if they are all sources of energy.  However, there are some that argue that protein should not be considered be an energy source equivalent to carbs and fat.

Protein is critical for growth and repair of our muscles and organs and our neurotransmitters.[24]  While it is true that protein can be converted to glucose and ketones if required, the reality is that it is not easy for the body to do this![25]

The amount of energy lost in processing each macronutrient (i.e. the thermic effect of food or specific dynamic action) is shown in the table below.[26]  Compared to carbohydrate and fat, it takes a lot of energy to convert protein to glucose.  The body just doesn’t want to do it unless there is absolutely is no glucose available from any other sources.

macronutrient min max
carbohydrate 5% 15%
Protein 20% 35%
fat 5% 15%

Personally, I find that if I eat a lot of protein and not much else my appetite for carbs or fat will increase.  It seems that my body wants to use anything other than protein to replenish liver glycogen.  To quote Jason Fung:[27]

Why would your body store excess energy as fat, if it meant to burn protein as soon as the chips were down? Protein is functional tissue and has many purposes other than energy storage, whereas fat is specialised for energy storage.

Would it not make sense that you would use fat for energy instead of protein?  Why would we think Mother Nature is some kind of crazy? 

That is kind of like storing firewood for heat. But as soon as you need heat, you chop up your sofa and throw it into the fire. That is completely idiotic and that is not the way our bodies are designed to work.

oxidative priority

There is only a small capacity for protein storage in our blood stream and we waste around 25% of the energy from the protein as heat in processing it.  Hence, the body typically doesn’t drive us to overeat protein, but it can be used for fuel if there is nothing else to burn.   It makes sense that protein sends a strong satiety signal back to our brain once we have eaten as much as we can use.

It’s also useful to look at protein in terms of oxidative priority.  Craig Emmerich from mariamindbodyhealth.com has prepared the below refinement of Ray Cronise’s oxidative priority chart[28] (see Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease) by adding in ketones.

What this means is:

  1. The body will prioritise clearance of alcohol because there is no storage system for it.
  2. Similarly, the body will look to clear ketones from the system because there is minimal storage capacity for them in the blood.
  3. The body will look to clear protein that hasn’t been used for muscle repair and neurotransmitters for brain function.
  4. We will turn to glucose, for which we have a greater storage capacity in our liver, muscles and bloodstream.
  5. Lastly, once we have burned through all these other substrates, will we look to burn our fat, either dietary or the fat stored on our body.

So, if you want to burn body fat you need to limit alcohol, exogenous ketones, protein, carbohydrate and dietary fat.

Oxidative priority versus insulin load

I think Cronise’s oxidative priority concept is another way to look at the insulin load of our diet.

insulin load = carbohydrates – fibre + 0.56 * protein

Our body uses insulin to keep glycogen stored in our liver and fat in our adipose cells until the other fuels are used up.  There is no point in going out of our way to consume excessive protein because it takes more effort to burn through before we can get to the fat on our plate or our belly.   However, it is logical that our appetite switches off once we get enough protein because there is no room to store excess protein and it’s hard work to burn it.

but what about mTOR?

mTOR (mammalian target of rapamycin) controls our fuel flow and our appetite.  Similar to insulin and insulin-like growth factor (IGF-1), mTOR promotes growth.  Growth is good if we are a baby or a teenager.  But some people grow too much.

There is a limited number of times we can turn over our cells in our lifetime.  Constant periods of plenty without periods of restriction leads to continued growth of unwanted things like cancer.

Dr Ron Rosedale is a proponent of limiting protein in an effort to extend lifespan.

There have been a number of other proponents of limitation of animal protein in the vegan circle for some time. Dr Greger’s Plant Based NutritionFacts.org recommends limitation of methionine, leucine and isoleucine.

Dr Steven Gundry recommends a grain free high fat version of the protein restricted approach.

One option in response to this theory is to consistently restrict protein to achieve long term health.  Some people try to keep their protein low to ensure that they are always in a state of autophagy or muscle breakdown and self eating.

However, I don’t think chronic intentional protein restriction is necessarily optimal.  What we are aiming for is adequate, but not excessive, energy intake (including protein) without malnutrition (i.e. vitamins, minerals, aminos and essential fatty acids).

On top of this, balanced periods of feasting and fasting will allow autophagy and growth.

Before we had refrigerators

In the days before agriculture, fertilisers from fossil fuels, and even refrigerators in our homes (less than 100 years ago) our environment would enforce periods of growth and period of famine.

These days, we can source cheap food to keep on growing 24/7, 365 days a year.   We have no externally enforced periods of autophagy when we can clear the old and dying proteins in our body.

If we have growth interspersed with fasting, then we give the body a chance to build muscle and use protein for repair while also giving the body a chance to clean house and purge the dying white blood cells and burgeoning cancer cells before it gets ugly.

Your body will naturally crave more protein in periods of activity and repair and less in periods of inactivity.  If your appetite isn’t working as well as you’d like it to (i.e. you have more body fat than you would like), you can force a feast / fast cycle based on managing your weight or your blood glucose levels.

Like many things in life, optimal protein intake is a balance between extremes.  More is not necessarily better.  But less is not better either.  We want our body to thrive on enough, but not too much energy while still getting the micronutrients it needs.

Too much mTOR and IGF-1 can stimulate excessive growth and cancer while too little can lead to muscle loss, which does not support health in old age.[29]   The EAR and DRI for protein actually increase for people over 70 to prevent sarcopenia.  If you are lacking lean muscle mass then there is a greater chance you will not have great insulin sensitivity in old age.

If you are suffering from sarcopenia you may fall and break your hip and never get up again.  As shown in the figure below, too much or too little IGF-1 is not good.  As with most things, it’s a balance.

protein leverage hypothesis

Protein is critical to life so our appetite typically makes sure we get enough.  “Obesity: The protein leverage hypothesis[30] suggests that we keep eating until we get enough protein.  If we are getting plenty of protein then we will stop eating when we get enough energy and protein.

In the wild, animals have an innate sense of the nutrients they need and which foods will provide those requirements, whether they be protein, energy or other micronutrients.

While it’s easy to track macronutrients and calories, I think it’s often the body’s micronutrient needs that derail our calorie restriction efforts and aspirations.

Most of the food that is available to us these days is much more deficient in micronutrients than it once was, but at the same time it is flavoured and coloured to make it appear that it has heaps more nutrition than it actually does; so we keep on eating the food that is manufactured to look and taste good, all the while not getting the micronutrients we really need from the food, so we just keep eating.

We need a range of nutrients from our food to fuel our mitochondria so that it can efficiently burn through the food we eat, and not have it sit around in the blood.[31] [32]

For instance, the figure below from Spectracell shows the nutrients that are often missing in people with diabetes.[33]  We need all these nutrients from our food to support our mitochondria to effectively produce energy from our food and stop excess glucose and fatty, fatty acids and ketones building up in our blood stream.

action steps

It’s important to meet your minimum protein intake which may be higher if you are growing, older or active.

Once you’ve met the minimum intake of protein and essential fatty acids (about 314 calories per day) you need to decide what you are going to fill the rest of your “discretionary calories” with to prevent starvation.

If you are looking for therapeutic ketosis (i.e. for cancer, epilepsy, dementia, Alzheimer’s etc) then you may want to get the majority of your energy from fat while maintaining minimum protein levels and also staying in an energy deficit (see optimal foods for therapeutic ketosis).[34] [35]

If you’re managing diabetes and not looking to lose weight you will likely want to keep your carbohydrates low and get more of your energy from fat (see optimal foods for diabetes and nutritional ketosis).

If you’re wanting to lose body fat then perhaps you can count the energy from your body as part of your daily intake and try to maximise the nutrient density of the remaining intake.  That is, maximise nutrients with the minimum amount of energy intake (see optimal foods for fat loss).

summary

  • You can get too much protein but at the same time you can get too little protein.
  • Periods of feasting and fasting are beneficial rather than targeting chronic high or low protein.
  • It’s very hard to get a good balance of micronutrients with low protein. Protein tends to come packaged with other nutrients.
  • If you focus on micronutrients (vitamins, minerals, amino acids, fatty acids) then the macronutrients (carbs, fat and protein) largely look after themselves. We will get enough, but not excessive, amounts of protein.

 

references

[1] http://www.nejm.org/doi/full/10.1056/NEJM197003192821209

[2] https://www.nrv.gov.au/nutrients/protein

[3] http://ajcn.nutrition.org/content/77/1/109.full

[4] https://www.ketogenicforums.com/t/hobbit-vs-2-keto-dudes/10641/12

[5] http://www.ketogenic-diet-resource.com/daily-protein-requirement.html

[6] https://intensivedietarymanagement.com/how-much-protein-is-excessive/

[7] http://perfecthealthdiet.com/category/nutrients/protein/

[8] https://www.ncbi.nlm.nih.gov/pubmed/11382798

[9] https://www.ncbi.nlm.nih.gov/pubmed/23867520

[10] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623318/

[11] https://www.ncbi.nlm.nih.gov/pubmed/12626690

[12] http://ajcn.nutrition.org/content/99/4/891.long

[13] http://ajcn.nutrition.org/content/86/4/995.long

[14] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555150/

[15] http://apps.who.int/iris/bitstream/10665/43411/1/WHO_TRS_935_eng.pdf

[16] https://en.wikipedia.org/wiki/Essential_amino_acid

[17] http://ajcn.nutrition.org/content/87/5/1554S.full

[18] https://www.ncbi.nlm.nih.gov/pubmed/15836464

[19] http://www.sciencedirect.com/science/article/pii/S0261561417302030

[20] https://optimisingnutrition.com/2016/11/19/the-alkaline-diet-vs-acidic-ketones/

[21] https://www.youtube.com/watch?v=E44yCNpP8bs

[22] https://www.researchgate.net/publication/13445647_Effects_of_Exercise_on_Dietary_Protein_Requirements

[23] http://bayesianbodybuilding.com/the-myth-of-1glb-optimal-protein-intake-for-bodybuilders/

[24] https://www.ncbi.nlm.nih.gov/pubmed/7903674

[25] https://www.ncbi.nlm.nih.gov/m/pubmed/22215165/

[26] https://en.wikipedia.org/wiki/Specific_dynamic_action

[27] https://intensivedietarymanagement.com/fasting-and-muscle-mass-fasting-part-14/

[28] http://online.liebertpub.com/doi/pdf/10.1089/met.2016.0108

[29] https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2011-1377

[30] http://onlinelibrary.wiley.com/doi/10.1111/j.1467-789X.2005.00178.x/full

[31] http://www.simonandschuster.com.au/books/The-Dorito-Effect/Mark-Schatzker/9781476724232

[32] https://www.researchgate.net/profile/Fred_Provenza

[33] https://naturallynourishedrd.com/wp-content/uploads/2013/09/Interactive-Library-Nutrient_Correlation_Wheels-2.pdf

[34] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263749/

[35] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215472/

why do my blood sugars rise after a high protein meal?

Complex issues often require more detail than you can pack into a Facebook post.

One such area of confusion and controversy is gluconeogenesis and the impact of protein on blood sugar and ketosis.

2017-06-03 02.27.38.png

Some common questions that I see floating around the interwebs include:

  • If you are managing diabetes, should you avoid protein because it can convert to glucose and “kick you out of ketosis”?

Imageresultforketonesglucose

  • If you’ve dropped the carbs and protein to manage your blood sugars, should you eat “fat to satiety” or continue to add more fats until you achieve “optimal ketosis” (i.e. blood ketone levels between 1.5 and 3.0mmol/L)?

  • Then, if adding fat doesn’t get you into the “optimal ketosis zone”, do you need exogenous ketones to get your ketones up so you can start to lose weight?

  • And what exactly is a “well formulated ketogenic diet” anyway?

This article explores:

  • the reason that some people may see an increase in their blood sugars and a decrease in their ketones after a high protein meal,
  • what it means for their health, and
  • what they can do to optimise the metabolic health.

Protein is insulinogenic and can convert to glucose

You’re probably aware that protein can be converted to glucose via a process in the body called gluconeogenesis.

Gluconeogenesis is the process of converting another substrate (e.g. protein or fat[1]) to glucose.

  1. Gluco = glucose
  2. Neo = new
  3. Genesis = creation
  4. Gluconeogenesis = new glucose creation

As shown in the table below, all but two of the amino acids (i.e. the building blocks of protein) can be converted to glucose.  Five others can be converted to either glucose or ketones depending on the body’s requirements at the time.

Once your body has used up the protein, it needs to build and repair muscle and make neurotransmitters, etc. any “excess protein” can be used to refill the small protein stores in the blood stream and replenish glycogen stores in the liver via gluconeogenesis.

The fact that protein can be converted to glucose is of interest to people with diabetes who go to great lengths to keep their blood sugar under control (e.g. taking medications, changing their diet, exercising, trying to lose weight, etc.).[2]

Someone on a very low carbohydrate diet may end up relying more on protein for glucose via gluconeogenesis.[3]  The benefit of getting more glucose from protein via gluconeogenesis rather than carbs is that it is a slow process and easier to control with measured doses of insulin compared to simple carbs which will cause more abrupt blood sugar rollercoaster.

How much insulin does protein require?

The food insulin index data[4] [5] [6] is an untapped treasure trove of data that can help us understand the impact of foods on our metabolism.   I have discussed how we can use the insulin index at length in the articles here, but have summarised some relevant observations below.

Our glucose response to carbohydrate

The food insulin index testing measured the glucose and insulin response to various foods in healthy people (i.e. non-diabetic young university students).

To calculate the glucose score or the insulin index pure glucose gets a score of 100% while everything else gets a score between zero and 100% based on the comparative glucose or insulin area under the curve response.  So we are comparing the glucose and insulin response to various foods to eating pure glucose.

As shown in the chart below, the blood glucose response of healthy people is proportional to their carbohydrate intake.  High protein meat and fish and high-fat foods (butter, cream, oil) tend to have a negligible impact on glucose.

Our insulin response to carbohydrates

The story is not so simple when it comes to our insulin response to food.

As shown in the chart below, the carbohydrate content of our food only partially predicts our insulin response to food.  Low fat, low carb, high protein foods elicit a significant insulin response.

As you can see in the chart below, once we account for protein we get a better prediction of our insulin response to food.  It seems we require about half as much insulin for protein as we do for carbohydrate on a gram for gram basis to metabolise protein and use it to repair our muscles and organs.

image10

But does this mean we should avoid or minimise protein for optimal diabetes management or weight loss?

Does protein actually turn to chocolate cake?

Read on to find the answer.

What happens to insulin and blood sugar when we increase protein?

While protein does generate an insulin response, increasing the protein content of our food typically decreases our insulin response to food.

Increasing protein generally forces out processed carbs from our diet and improves the amount of vitamins and minerals contained in our food.[7]

Similarly, increasing the protein content of your food will also decrease your glucose response to food.

But what about a huge protein meal?

It’s worth noting that the food insulin index testing was done using 1000 kJ or 240 calories of each food (i.e. a substantial snack, not really a full meal).  But what about if we ate a LOT of protein?  Wouldn’t we get a blood sugar response then?

The figure below shows the glucose response to 80g of glucose vs. 180g of protein (i.e. a MASSIVE amount of protein).  While we get a roller coaster-like blood sugar rise in response to the ingestion of glucose, blood sugar remains relatively stable in response to the large protein meal.[8] [9] [10]

So, if protein can turn to glucose, why don’t we see massive glucose spike?

What is going on?

The role of insulin and glucagon in glucose control

To properly understand how we process protein, it’s critical to understand the role of the hormones insulin and glucagon in controlling the release of glycogen release from our liver.

These terms can be confusing.  So let me spell it out.

  • The liver stores glucose in the form of glycogen in the liver.
  • Glucagon is the hormone that pushes glycogen out into the bloodstream as blood glucose.
  • Insulin is the opposing hormone that keeps glycogen stored in our liver.

When it comes to getting glucose out of the liver, glucagon is like the accelerator pedal while insulin is the brake.

When our blood glucose is elevated, or we have external sources of glucose, the pancreas secretes insulin to shut off the release of glycogen from the liver until we have used up or stored the excess energy.

Insulin helps to turn off the flow of glucose from our liver and store some of the excess glucose in the blood as glycogen and, to a much lesser extent, fat (via de novo lipogenesis).  It also tells the body to start using glucose as its primary energy source to decrease it to normal levels.

We can push the glucagon pedal to extract the glycogen stores in our liver by eating less carbohydrate (i.e. low carb or keto diets), even better yet, not eating at all (aka fasting)!

High insulin levels effectively mean that we have enough fuel in our blood stream and we need to put down the fork.

While fat typically doesn’t require significant amounts of insulin to metabolise, an excess of energy from any source will cause the body to ramp up insulin to shut off the release of stored energy from the liver and the fat stores.

Glucose, insulin and glucagon response to a high carbohydrate meal

At the risk of getting a little technical, let’s look at how our hormones respond to different types of meals.

As shown in the chart above, when we eat a high carbohydrate meal insulin rises to stop the release of glycogen.  Meanwhile, glucagon drops to stop stimulating the release of glycogen from the liver.  When we have enough incoming glucose via our mouth, we don’t need any more glucose from the liver.[11]

Glucose, insulin and glucagon response to a high protein meal

When we eat a high protein meal, both glucagon and insulin rise to maintain steady blood glucose levels while promoting the storage and use of protein to repair our muscles and organs and make neurotransmitters, etc. (i.e. important stuff!).

In someone with a healthy metabolism, we get a balance between the brake (insulin) and the accelerator (glucagon).  Hence, we don’t get any glycogen released from the liver into the bloodstream to raise our blood sugar because the insulin from the protein is turning off the glucose from the liver.

This is why metabolically healthy people see a flat line blood sugar response to protein.

(You may need to read that a few times to understand it.  It’s taken a couple of years for it to sink in for me.) 

Insulin response to protein for people with diabetes

Things are different if you have diabetes.

Insulin resistance means that between our fatty liver and insulin resistant adipose tissue, things don’t work as smoothly.

While your blood sugar may rise or fall in response to protein your insulin will need to rise a lot more to metabolise the protein to build muscle and repair your organs.

Unfortunately, people who are insulin resistant may struggle to build muscle because of the insulin resistance.  Then the higher levels of insulin may drive them to store more fat in the process.[12]  Becoming insulin sensitive is important!

The chart below shows the difference in the blood glucose and insulin response to protein in a group of people who are metabolically healthy (white lines) versus people who have type 2 diabetes (yellow lines).[13]

People with diabetes may see their glucose levels drop from a high level after a large protein meal and will have a much greater insulin response due to their insulin resistance.  People with more advanced diabetes (i.e. beta cell burn out or Type 1 diabetes) may even see their blood sugar rise.  This is because their ability to produce insulin to metabolise the protein and keep glycogen in storage cannot keep up with the demand.

Drawing on the brake/accelerator analogy, it’s not necessarily protein turning into glucose in the blood stream via gluconeogenesis, but rather the glucagon kicking in and a sluggish insulin response that isn’t able to balance out the glucagon response to keep the glycogen locked away in the liver.

Healthy people will be able to balance the opposing hormonal forces of the insulin (brake) and the glucagon (accelerator), but if we are insulin resistant and/or don’t have a properly functioning pancreas (brake), we won’t be able to produce as much insulin to balance the glucagon response.

Someone who is insulin resistant has normally functioning accelerator pedal (glucagon stimulating glucose release in the blood) but a faulty brake (insulin).

Real life example

To unpack this further, let’s look at an example close to home.

The picture below is of a family meal (i.e. steak, sauerkraut, beans and broccoli) that we had when my wife Monica (who has Type 1 Diabetes) was wearing a continuous glucose meter.

The photo of the continuous glucose monitor below shows Monica’s blood sugar response after the meal which we had at about 5:30 pm.  Her blood sugar rises in response to the veggies and then comes back down as the insulin kicks in.

image31.jpg

The process to bring her blood sugars back under control from a few carbs in the veggies takes about two hours.

But over the next twelve hours, Monica’s blood sugar level drifts up as the insulin dose goes to work as she metabolises the protein.  For all intents and purposes though it looks like the protein is turning to glucose in her blood!

image24.jpg

This is not a one off.  We’ve seen this blood glucose response regularly.

Many people with type 1 diabetes know they need to dose with adequate insulin for protein.  Once you work out how to reduce simple carbs, working out how to dose for protein is the next frontier of proper insulin management. It’s complicated and sometimes confusing.

More insulin or less protein?

So, what is the problem here?  Why are Monica’s blood sugars rising?

Is it too much protein?

Or not enough insulin (i.e. because she has type 1 diabetes)?

I think the best way to explain the rise in blood sugars is that there is not enough insulin to keep the glycogen locked away in her liver and metabolise the protein to build muscle and repair her organs at the same time.

Meanwhile, the glycogen pedal is pushed down as it normally would be in response to a protein which is driving the glucose up in her bloodstream.

There is just not enough insulin in the gas tank (pancreas) to do everything that needs to be done.

So, if Monica had a choice, should she:

  • A. Keep her blood sugars stable and stop metabolising protein to repair her muscles and organs,
  • B.  Metabolise protein to build her muscles and repair her organs while letting her blood sugars drift up, or
  • C. Both of the above.

Personally, I think the correct answer is C.

While it’s probably not wise to go hog-wild with protein supplements and powders if you have diabetes, as detailed in this article, swinging to the other extreme to target minimal protein levels is a sure way to end up with a poor nutritional outcome.

According to Simpson and Raubenheimer in Obesity: the protein leverage hypothesis (2005), people with diabetes may actually need to eat more protein to ensure that they have adequate amounts to build lean muscle mass given that higher levels of gluconeogenesis may cause more protein loss to glucose due to their insulin resistance.

One source of protein loss is hepatic gluconeogenesis, whereby amino acids are used to produce glucose. This is inhibited by insulin, as is the breakdown of muscle proteins to release amino acids, and therefore occurs mainly during periods of fasting (or low carb).

However, inhibition of gluconeogenesis and protein catabolism is impaired when insulin release is abnormal, insulin resistance occurs, or when circulating levels of free fatty acids in the blood are high. These are interdependent conditions that are associated with overweight and obesity, and are especially pronounced in type 2 diabetes (12,34).

It might be predicted that the result of higher rates of hepatic gluconeogenesis will be an INCREASED requirement for protein in the diet.

A lot of my early motivation in developing the Optimising Nutrition blog was to understand which foods provoked the least insulin response and how to more accurately calculate insulin dosing for people with diabetes to help Monica get off the blood glucose roller coaster.

Like Ted Naiman, I thought if we reduced the insulin load from our food (including minimising protein) we would have a pretty good chance of losing a lot of weight (just like someone with uncontrolled type 1 diabetes).

I no longer think we need to restrict protein to optimise insulin resistance.  However, there’s no need to go to the other extreme and binge on protein.   Worrying about getting too little or too much protein is largely irrelevant.  We will get enough protein when we eat a nutritious diet.  Left to its own devices, our appetite typically does a good job of seeking out adequate protein to suit our current needs.

Meanwhile actively aiming to minimise protein will make it harder to maintain lean muscle mass which is critical to glucose disposal and insulin sensitivity.

If you see your blood sugar levels rise due to protein, it is likely due to inability to produce enough insulin rather than too much protein.

Basal and bolus insulin

One option to minimise the adverse effects of excess insulin is to focus on reducing the insulin load of our diet and eat only high-fat foods that have a low proportion of insulinogenic calories (i.e. ones towards the bottom left of this chart).

If you are highly insulin resistant and obese, this will work like magic, at least for a little while.

People who suddenly stop eating processed junk carbs and eat more fat often find that their appetite plummets as the insulin demand of their food drops and they are more easily able to access their own body fat.[14] [15]

But this is only part of the story.  Again, we can learn a lot about insulin from people with Type 1 diabetes who have to manually manage their insulin dose.

In diabetes management there are two kinds of insulin doses:

  1. basal insulin, and
  2. bolus insulin.

The bolus insulin is the insulin for the food we eat.

The basal insulin is a steady flow of insulin that is required throughout the day and night.

Without the basal insulin, we would disintegrate into uncontrolled gluconeogenesis and ketoacidosis (e.g. uncontrolled type 1 diabetes).

In a person eating a typical western diet around half the insulin given in a day is for the food and half is basal insulin. The chart below shows the daily insulin dose of a person with type 1 diabetes eating a standard diet.  The white component is the basal, and the black is the bolus for their food.

In someone following a low carb diet only around 30% of the insulin is for the food and 70% is basal insulin as shown below in my wife Monica’s daily insulin dose shown below.

daily insulin.jpg

We can only reduce our insulin requirements marginally by changing our diet.   We always need basal insulin.  If we’re insulin resistant, we’ll need more.

Like caffeine or alcohol, we become more sensitive to insulin when we are exposed to less of it.  As we reduce the insulin load of our diet, our insulin sensitivity will improve.

But not everyone who follows a low carb diet instantly turns into a super athlete.  There has to be more to the story.

How to improve your basal insulin sensitivity

In addition to modifying our diet, we can also improve our blood glucose control by maximizing our body’s ability to dispose of glucose without relying on insulin (i.e. non-insulin mediated glucose uptake).  We enhance our insulin sensitivity and our ability to use glucose by building more lean muscle mass.

I used to think that if we just dropped the insulin load of our diet down far enough, we would be able to lose weight, a bit like someone with uncontrolled type 1 diabetes.  But now I understand that there will always be enough basal insulin in our system to store excess energy (regardless of the source) and stop our liver from releasing stored energy.

While a diabetic can reduce their insulin requirements for food by eating food with lots of fat, they can actually end up insulin resistant and need more basal insulin if they drive over abundance of energy, regardless of whether it’s from protein, fat or carbs.[16]

While ketones can rise to quite high levels when fasting (which is great), I fear that some people are chasing high ketone levels with lots of dietary fat and the excess energy may lead to insulin resistance in the long term.

Dr Bernstein’s approach

The method recommended by Dr Bernstein (who has type 1 diabetes himself) is typically lower in carbs, adequate protein (depending on whether you are a growing child) and moderate in fat.

Even at 83, Dr B feels it is important to maintain lean muscle mass through regular exercise to maximise his insulin sensitivity.

Will too much protein “kick me out of ketosis”?

While the ketogenic diet is becoming popular, I think most people who are interested in it do not necessarily require therapeutic ketosis, but rather are chasing weight loss or blood sugar control/diabetes management.

2017-06-03 (6).png

If you are managing a condition that benefits from high levels of ketosis (e.g. epilepsy, dementia, cancer, traumatic brain injury, Alzheimer’s) then limiting protein may be necessary to ensure continuously elevated ketone levels and reduce insulin to avoid driving growth in tumour cells and cancer.  

Giving the burgeoning interest in the ketogenic dietary approach, I think it’s important to understand the difference between exogenous ketosis and endogenous ketosis.

  • Endogenous ketosis occurs when a person eats less than the body needs to maintain energy homeostasis and we are forced to up the glycogen in our liver and then our body fat to make up the difference.
  • Exogenous ketosis (or nutritional ketosis) occurs when we eat lots of dietary fat (or take exogenous ketones), and we see blood ketones (beta hydroxybutyrate) build up in the blood. We are burning dietary fat for fuel.

Higher levels of ketones in the blood are an indication that you are eating more fat than you are burning.  Having some level of blood ketones is an indication that your insulin is low, but whether your blood ketones are high or low should not be a major cause for concern as long as your blood glucose levels are also low.  Unless we are doing a long term fast, we will all be somewhere on the spectrum between exogenous and endogenous ketosis.

Keep in mind though that most of the beneficial things we attribute to “ketosis” and the “ketogenic diet” occurs when we are in endogenous ketosis (i.e.  when fat is coming from our body, not our plate or coffee cup).

As detailed in the popular article What are Optimal Ketone and Blood Sugar Levels in Ketosis? it seems that lower levels of total energy (i.e. towards the left of this the chart below) is a better place to be, particularly if we are chasing weight loss or diabetes management.

Our blood ketones may not be as high when we are in endogenous ketosis, but that’s OK because most of the good stuff happens in a low energy state.  

Endogenous ketosis Exogenous ketosis
Low total energy (i.e. blood glucose + blood ketones + free fatty acids) High total energy (i.e. blood glucose + blood ketones + free fatty acids)
Stored energy taken from body fat for fuel Ingested energy used preferentially as fuel
Stable ketone production all day Sharp rise of ketones for a short duration.  Need to keep adding fat or exogenous ketones to maintain elevated ketones.
Insulin levels are low which allows release of glycogen from our liver and fat stores Insulin levels increase to hold glycogen in liver and fat in adipose tissue
Mitochondrial biogenesis, autophagy, increase in NAD+, increase in SIRT1 Mitochondrial energy overload, autophagy turned off, decrease in NAD+
Body fat and liver glycogen used for fuel Liver glycogen refilled and excess energy in the bloodstream stored as fat.

Summary

  • Gluconeogenesis is the creation of new glucose (generally from protein).
  • Protein requires about half as much insulin as carbohydrate to metabolise.
  • Increasing protein intake will generally improve our blood glucose and insulin levels.  Protein forces out processed carbohydrates, increasing the nutritional quality of our diet and helps us to build muscle which in turn burns glucose more efficiently.
  • In a metabolically healthy person glucagon balances the insulin response to protein, so we see a flat line blood sugar response to even a large protein meal.
  • If you cannot produce enough insulin, you may see glucose rise as your body tries to metabolise the protein and keep the energy stored in the liver at the same time.
  • The insulin for the food we eat (bolus) represents less than half of our daily insulin demand. We can improve our basal insulin sensitivity by building lean muscle mass and improving mitochondrial function via a nutrient dense diet.
  • If we are aiming for weight loss and health, then low blood sugars and low ketones will be more desirable rather than chasing high ketone levels via exogenous ketosis.

references

[1] http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002116

[2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636610/

[3] https://optimisingnutrition.com/2015/06/04/the-goldilocks-glucose-zone/

[4] https://ses.library.usyd.edu.au/handle/2123/11945

[5] https://optimisingnutrition.com/2015/03/23/most-ketogenic-diet-foods/

[6] https://optimisingnutrition.com/2015/03/30/food_insulin_index/

[7] https://optimisingnutrition.com/2017/05/27/is-there-a-relationship-between-macronutrients-and-diet-quality/

[8] https://www.ncbi.nlm.nih.gov/pubmed/16694439

[9] http://caloriesproper.com/dietary-protein-does-not-negatively-impact-blood-glucose-control/beef-vs-glucose/

[10] http://www.ketotic.org/2013/01/protein-gluconeogenesis-and-blood-sugar.html#¹

[11] https://books.google.com.au/books?id=3FNYdShrCwIC&printsec=frontcover&dq=marks+basic+medical+biochemistry&hl=en&sa=X&ei=-ctaVcivOJfq8AXL84CAAw&redir_esc=y#v=onepage&q=glucagon&f=false

[12] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997013/

[13] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524031/

[14] https://docmuscles.com/

[15] https://optimisingnutrition.com/2017/01/15/how-optimize-your-diet-for-your-insulin-resistance/

[16] https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-11-23

 

post last updated August 2017

is there a relationship between macronutrients and diet quality?

Q:  To achieve optimal health, diabetes control and longevity you should:

  • Eat more fat to burn your body fat.
  • Follow a Protein Sparing Modified Fast (PSMF).
  • Eat more protein and lift heavy.
  • Drink Bulletproof Coffee.
  • Fast more.
  • Decrease protein and eat more fat bombs.
  • Take exogenous ketones, butter and MCT oil to boost your blood ketones.
  • Eat only plants.
  • Eat no plants.
  • All of the above.
  • None of the above.
  • I give up! All you ‘diet gurus’ can’t agree.  I’m going back to Maccas where things are simple!

Although many of these answers are contradictory, all are ‘correct’ depending on which low carb / keto group(s) you belong to.  It can be confusing out there on the interwebs!

Image result for confusing

For the last two years I’ve been working to refine our ability to quantitatively define and optimise our food quality (a.k.a. nutrient density).

At the start of 2017, I developed the Nutrient Optimiser and have since run detailed macronutrient and micronutrients analyses for more than forty people, all with different starting points and with different goals.

2017-05-23

With all the conflicting advice out there and my personal quest to manage diabetes while maximising nutrient density, I wondered what my nutrient analysis tools might be able to tell us about the relationship between macronutrients and micronutrients to provide some clarity to the circular debates that I see so often online.

I’m never sure where these articles will end up when I start the analysis.  And this one is certainly interesting!

The analysis suggests that a nutrient dense diet is typically not low in protein.  However just focusing on increasing protein won’t necessarily lead to a nutrient dense outcome.

We get a much better outcome when we focus on the harder-to-find micronutrients (i.e. vitamins, minerals and essential fatty acids).  From there we can tweak the nutrient dense template to suit our goals (e.g. weight loss, diabetes control, muscle gain, athletic performance or therapeutic ketosis).

Nutrient density

Let’s quickly look at what we mean by ‘nutrient density’ and how we can quantify it.

All foods

The chart below shows the nutrients provided by the 8,000 foods in the USDA database in terms of the percentage of the Daily Recommended Intake (DRI) if you ate just a little bit of all of them.

It’s easy to meet the recommended minimum intake of the micronutrients shown at the bottom of the chart (e.g. vitamin B12 and most of the amino acids) (at least if you are eating animal products).

However, you really have to go out of your way to get adequate amounts of the nutrients at the top of the chart (e.g. omega 3, vitamin D, choline, vitamin E, calcium, manganese and magnesium).

The most nutrient dense foods

The chart below shows the micronutrients provided by the most nutrient dense foods.  When we focus on foods that contain more of the harder-to-find nutrients we can get a massive boost in all the micronutrients.

Why should we pursue a nutrient dense diet?

With adequate amounts of nutrients being provided by the food we eat there is a good chance we will be able to satisfy our cravings with less energy.

Obtaining adequate levels of all the micronutrients will ensure that we have what we need to drive our mitochondria at full power rather than limping along.  We will feel energised and may find that our appetite turns off sooner and we will be less likely to overeat and get fat.[1] [2]  [3] [4] [5] [6] [7] [8] [9] [10] [11]

The chart below shows a comparison of the most nutrient dense 10% of the foods available compared to all the foods in the USDA database.  We get a significant improvement in our food quality by prioritising more nutrient dense foods.

Which nutrients do we need to worry about?

After a ton of trial and error and systems refinement (and some robust debates with Ray Cronise) I finally figured out that maximising nutrient density works best when we only focus on boosting the nutrients that are harder to obtain.

The nutrients listed below tend to be generally harder to get in adequate quantities:

  • Alpha-linolenic acid
  • EPA + DHA
  • Choline
  • Vitamin D
  • Vitamin E
  • Calcium
  • Magnesium
  • Potassium
  • Phosphorus
  • Zinc
  • Thiamine
  • Pantothenic acid
  • Niacin
  • Manganese
  • Folate
  • Selenium

Which nutrients are easier to find?

Listed below are the micronutrients that we don’t need to prioritise because they are fairly easy to get enough of:

  • Leucine
  • Valine
  • Sodium
  • Methionine
  • Isoleucine
  • Tyrosine
  • Riboflavin
  • Lysine
  • Vitamin B-6
  • Histidine
  • Threonine
  • Phenylalanine
  • Tryptophan
  • Iron
  • Vitamin C
  • Copper
  • Vitamin A
  • Vitamin B-12
  • Vitamin K

I have intentionally left out all the amino acids (i.e. protein) from the prioritisation because, as you will see below, it’s easy to get enough protein when we focus on the vitamins, minerals and essential fatty acids.

Can you get too much of a good thing?

As a general rule it’s hard to get excess micronutrients from real food, but it is possible.

  • While we can get more than thirty times the DRI for vitamin K from a nutrient dense diet there is no upper toxicity level of toxicity for vitamin K[12] [13] from natural sources.  However you can get too much menadione which is used as a vitamin K supplement.[14] [15]
  • We can get eighteen times the DRI for vitamin B12 from a nutrient dense diet, however again, there is no upper limit established for B12.[16] [17]
  • We can get seventeen times the DRI for Vitamin A from a nutrient dense diet. It is possible to get vitamin A toxicity, though again this typically occurs from supplementation.[18] [19]  There are some reports of Hypervitaminosis A from explorers gorging on polar bear liver, but this is not likely to be a common occurance.[20] [21]
  • We can get around twelve times the DRI for copper from a nutrient dense diet which is around the upper limit.  Though these high levels are unlikely to occur without high liver consumption which is not common.
  • A nutrient dense diet can provide around fifteen times the DRI for vitamin C however the upper limit is more than 20 times the DRI.[22] [23] Excessive vitamin C supplementation usually causes diarrhea, so it’s largely a self limiting situation.
  • A nutrient dense diet will provide around ten times the DRI for iron while the upper limit is set at around six times the DRI. Many women are iron deficient while many men have hemochromatosis which is excess iron storage.  Liver, mushroom, seaweed and spices are the highest sources of iron.  It’s useful to understand your current iron status to know whether you need more or less iron or should even be considering donating blood.
  • It is quite easy to get more than the DRI for amino acids. While high protein diets do not cause kidney disease in healthy people there is no need to chase excess super high levels of protein.[24]   And just like liver, most people will struggle to eat excessive amounts.

So yes, it is possible to get excessive levels of some micronutrients, though generally not a concern unless you are eating a LOT of liver or supplementing with synthetic nutrients.

The chart below shows the nutrient profile of Amy who is following a zero carb diet with a lot of organ meats.  While she is generally getting high levels of most nutrients, she is still not meeting the DRI for a number of vitamins and minerals that are typically found in plant foods (e.g. vitamin K1, calcium, manganese, vitamin E, magnesium and potassium).

At the other extreme we have David who is eating a plant based diet that has plenty of vitamins and minerals but less amino acids.  He knows he needs to supplement with vitamin B12 and vitamin D which are hard to get from a purely plant based diet.

When it comes to nutrient density I often see arguments around whether or not the daily recommended intake levels are correct and whether they might vary for different people with different dietary approaches and whether or not nutrients from plant or animal based food are more bioavailable.

While I think these are definitely under researched areas I think these discussions are not so relevant when we’re orders of magnitude above or below the DRI values.  We need to identify the full range of foods, from whatever source, that will provide the nutrients that we’re not getting enough.  We can then choose from within those to suit our tastes and preferences.  Our appetite can be a pretty good guide once we eliminate the processed hyper palatable nutrient poor foods that our willpower is no match for.

There is plenty of discussion about excess protein or excess calories.  While it’s true that excess is typically not good, I think it’s more valuable to focus on eating foods that contain more of the nutrients that we are currently not getting enough of.   When we’re eating nutrient dense whole foods we’re less likely to need to consciously worry about calories, protein, fat, carbs, sugar, fibre or whatever.

Is there any relationship between macronutrients and nutrient density?

While I don’t see a lot of discussion about nutrient density or food quality, there is seemingly endless debate in social media in low carb and keto circles around macronutrients.  People are often very passionate about eating more or less protein, carbs, fat and fibre.

Perhaps this is because macronutrients are reasonably easy to track and understand.  Or maybe it is because the previous approach hasn’t worked, so they swing to the other extreme.

We’ve been told for so long that fat is bad and now people are realising that it’s not as bad as they were told, so they swing to the other extreme.  Now fat can do no wrong.

Meanwhile, there are plenty of people who stick to fat being bad and wanting to avoid it.

Different people have different perspectives on the multifaceted topic of nutrition.

But is there really any value gained by focusing on primarily on macronutrients?  Will it improve our food quality or the adequacy of the various essential micronutrients?

To understand whether there is any useful relationship between the various macros and micronutrient adequacy I have plotted the various macronutrients versus the nutrient density score for the 8,000 foods in the USDA foods database.

Note: In this analysis a high nutrient density score means that a particular food has a relatively large amount of the harder-to-find nutrients listed above.  

Protein versus nutrients density

There is a lot of debate about protein and whether we should be getting more or less of it.

The chart below shows the nutrient density score for the harder-to-find vitamins, minerals and essential fatty acids vs protein (%).

2017-05-28 (9).png

Although amino acids have not included in the nutrient density score it appears that the more nutrient dense foods have more protein.  Conversely, foods with less protein have less of the nutrients that are harder to find.

It seems that if we avoid protein we will end up with less nutrients overall.  While if we focus on getting the nutrients that are harder to find we will get enough protein.

However, as they say, correlation does not equal causation.  There is a lot of scatter in this chart.  In this case the correlation (R2) of this relationship is 0.31.

This analysis makes me wonder if the studies that the benefits from increased protein are not at least in part from, not just getting adequate amino acids, but the increased levels of the other micronutrients that often come along with protein.

It’s hard to separate good nutrition and protein.

Fat versus nutrient density

The chart below shows the nutrient density score versus the percentage of calories from fat.

2017-05-28

The first thing to point out here is that there is a massive amount of scatter and a low degree of correlation between fat and micronutrients (R2 = 0.06).

However, it does seem that very high fat foods contain less of the harder-to-find nutrients.

Meanwhile at the other extreme very low fat foods can either be nutrient poor (e.g. sugar and processed grains which would be at the bottom left of this chart) or very nutrient dense (e.g. non-starchy vegetables which would be at the top right of this chart).

If we run a trend line through all these foods we see that the highest nutrient density occurs at around 30% calories from fat.

The reality is that not many people live primarily on high nutrient density low fat foods at the top left corner of this chart. People avoiding fat will often slip into the bottom left of this chart and resort to the low fat processed grains and sugars to get enough energy to get through the day.

Sugar versus nutrient density

There is currently a lot of focus on sugar as the primary culprit for our poor health.  Gary Taubes and Damon Gameau are down on sugar while Robert Lustig is leading the charge against fructose or fruit sugar.

2017-05-28 (1)

This analysis suggests that foods with more sugar have a poorer nutrient density, though it’s hard to make sense of this unless we differentiate between added refined sugar and naturally occurring sugar in plant based foods that come with a ton of other nutrients.  However, low sugar content does not necessarily guarantee excellent nutrient density.

Energy density versus nutrient density

Energy density is the amount of energy we get per gram of food.

2017-05-28 (2).png

Minimally processed foods contain more water and fibre and thus have a lower energy density but also tend to have a higher nutrient density.

Meanwhile, processed foods that are shelf stable and easy to transport typically have less water and fibre and more preservatives.

While lower energy density foods have a higher nutrient density, most people won’t survive long on a diet of only lettuce, broccoli and celery.  They will need some more energy dense foods to survive.

However, if you are looking to lose weight in a hurry while still getting the nutrients you need, focusing on lower energy density foods might not be a bad place to start.

Most people agree that eating more veggies will be better for their health, but the unfortunate reality is that it takes some time and money to prepare the food yourself rather than reaching for a quick and cheap energy hit with minimal effort.

Net carbs versus nutrient density

Foods with more digestible carbohydrates typically have a lower nutrient density.

2017-05-28 (4).png

However, simply going low carb doesn’t guarantee that we maximise nutrient density  There is a range of high and low nutrient density foods at the low carb end.

Whether or not you carbs are nutrient dense will likely depend more on whether they are highly processed or in their natural form, and will likely make a bigger contribution to their nutrient density than the quantity of carbs.

Fibre

Higher fibre foods contain more nutrients.  However, we can’t just add fibre supplements to maximise nutrient density.  Plant based whole foods that also happen to have heaps of fibre that provide us with more higher levels of nutrition.

2017-05-28 (5).png

Insulinogenic calories

The proportion of insulinogenic calories is the proportion of the food we eat that requires insulin to metabolise.

2017-05-28 (7).png

On the right hand side of the chart, highly processed foods with minimal protein and fat typically don’t provide a lot of the harder-to-find nutrients.

Meanwhile on the left hand side of the chart, foods with minimal fibre, carbs and protein are also less nutritious.

If we plot a trendline it appears that the maximum nutrient density occurs at around 50% insulinogenic calories.

If you are already insulin resistant you may want to steer your dietary ship to the left with a lower insulin load diet to the point that your pancreas can keep up and maintain normal blood sugars.  Meanwhile if you’re fit and insulin sensitive you will be able to have more leeway when it comes to macros and insulin load.

Summary

So what to make of all this?  Which of these parameters has the best correlation with food quality or nutrient density?  The table below shows the various parameters sorted by their correlation (R2) with their nutrient density score.

parameter correlation comment
protein 0.32 Nutrient dense foods tend to have more protein.
energy density 0.15 Lower energy density foods are typically more nutrient dense.
net carbs 0.12 Foods with more net carbs are typically less nutritious.
insulinogenic 0.11 Nutrient density peaks at around 50% insulinogenic calories.  Extremes are not optimal.
fibre 0.08 High fibre foods are often more nutritious.
fat 0.07 Nutrient density peaks at around 30% fat.
sugar 0.04 High sugar content correlates with low nutrient density

It seems that if we want to optimise the quality of our diet we should:

  1. Focus on the foods that contain the harder-to-find nutrients.
  2. Not actively avoid protein.
  3. Chose lower energy density foods when we can.
  4. Avoid foods that are largely digestible carbs with minimal fibre (e.g. processed grains and sugars).
  5. Chose moderately insulinogenic foods without swinging to either extreme (though we should err on the less insulinogenic side if we already have diabetes).

Meanwhile, sugar, fat and fibre, aren’t spectacular predictors of nutrition.

2017-05-28 03.41.23.png

chasing nutrients vs chasing macros

So, if protein is good, more is better, right?   Bring me the bulk tub of protein powder!

Not so fast.  It is important to understand the difference between emphasising:

  • all nutrients,
  • protein,
  • less insulinogenic foods, and
  • harder-to-find nutrients.

Maximise all nutrients

The chart below shows what happens to the micronutrient profile when we simply maximise all nutrients.

The amino acids are through the roof (69% protein) because aminos are easy to find in our food system, but we’re still lacking in many of the harder to get nutrients.

Maximise protein

If nutrient density correlates with protein then it makes some sense to prioritise protein.    Doesn’t it?

The chart below shows what happens to the nutrient profile if we sort the USDA foods database by % protein.  It seems that if we simply focus on protein we get a poor vitamin and mineral profile.

Minimising protein and maximising fat

Minimising protein and carbs while maximising fat is all the rage in the keto scene.  Unfortunately, a very low insulin load diet is not a high nutrient density approach as we can see from the chart below.  While we get adequate protein (15%), the vitamin and mineral profile is poor.   With 80% of our energy coming from fat we are deficient in about half the micronutrients.

Perhaps a very high fat therapeutic ketogenic approach should be reserved for special circumstances and extra attention given to the nutrients you won’t be able to get from your food?

Prioritising the harder to find nutrients

The chart below shows the outcome when we focus the harder to find nutrients (excluding amino acids).  We get adequate quantities of all the micronutrients and still plenty of protein.

Learnings from the Nutrient Optimiser analysis

It’s one thing to look theoretically in a database of individual foods.  But it’s another to look at what people are eating in real life.  Next, I’m going to share what I’ve learned from analysing a lot of different people’s food logs in the Nutrient Optimiser.

The nutrient density score

But first, I need to introduce you to the Nutrient Density Score.

The chart below shows Rhonda Patrick’s nutrient analysis.  Rhonda’s diet is not particularly extreme in anything other than nutrients.

Rhonda would score 100% if she could achieve 200% of the DRI for the hardest to hardest to find lower half of the nutrients.  However, because she doesn’t achieve 200% with all of the lesser scoring half of the nutrients she only gets a Nutrient Density Score of 81.3%.

For reference, if we add a little bit of all the foods in in the USDA database we would get a nutrient density score of 63% .  The most nutrient dense 10% of the foods in the USDA database will give us a nutrient density score of 93%.  Even Rhonda has some room for improvement.

By contrast, the chart below shows Patrick’s nutrient density score which comes in at only 21%. Patrick is following a very high fat keto approach even though his blood sugars are great and he doesn’t appear to be insulin resistant, just obese.

With so many of his micronutrients being nowhere near the DRI vales Patrick will need to eat a lot more of his current diet to meet the daily recommended intake for most of the nutrients.

There is a good chance that that Patrick will be craving more food to obtain the nutrients that he needs to get through the day.  Even though he is trying to lose weight, he might end up overeating more calories using his current diet than if he spent a week eating with Rhonda.

The table below shows the nutrient density score for more than forty Nutrient Optimiser analyses that I’ve run to date along with:

  • protein (g/kg LBM),
  • protein (%)
  • fat (%)
  • fibre (%)
  • net carbs (%).

I encourage you to click on each of the names below to review their nutrient analysis to see what they are and aren’t eating to get these scores.

Name score protein (g/kg LBM) protein fat fibre (%) net carbs (%)
Rhonda Patrick 82% 2.5 17% 57% 10% 15%
Briana Theroux-Hulsey 79% 3.5 29% 21% 15% 35%
David Houghton 77% 0.6 17% 2% 21% 60%
Andy Mant v3 77% 4.4 27% 53% 5% 15%
Alber Van Zyl 75% 1.0 15% 77% 2% 6%
Alma Fuente 75% 5.3 27% 60% 7% 6%
Mike Berta 74% 2.1 31% 58% 4% 7%
Alex Leaf 74% 3.3 33% 26% 10% 32%
Alex Ferrari 74% 2.0 17% 54% 6% 24%
Deb Pinsky Lambert v2 72% 1.2 31% 61% 3% 6%
Luis Villasenor 72% 2.4 43% 48% 3% 5%
Gayle Louise 71% 2.4 40% 49% 4% 7%
Andy Mant v2 70% 3.0 26% 54% 6% 15%
Robin Reyes v3 69% 1.6 18% 67% 6% 8%
Ruth Jamieson v2 66% 1.6 18% 67% 6% 8%
Amy 65% 3.3 41% 57% 0 1%
Ingunn Lovik 62% 1.5 21% 70% 1% 8%
Sophia Thom 62% 1.1 24% 65% 4% 7%
Franziska Spritzler 61% 2.3 27% 55% 10% 8%
Sarah Koenck 58% 2.2 14% 77% 4% 6%
Ruth Jamieson v1 57% 1.4 19% 65% 7% 9%
Maria Fornaciari 52% 1.6 30% 61% 3% 6%
Matija Mlakar 50% 2.1 23% 49% 11% 17%
Nicole Jacobi 48% 2.8 32% 60% 3% 6%
Graeme Monteith 48% 2.6 18% 67% 5% 10%
Dave Knowles 46% 2.4 31% 63% 2% 3%
John Robertson 46% 1.4 16% 59% 4% 21%
Leah Williamson 44% 1.8 19% 75% 2% 3%
Balin Jones 43% 5.0 26% 66% 3% 5%
Andy Mant v1 34% 3.7 35% 54% 2% 9%
George 34% 0.8 9% 69% 9% 12%
Robin Reyes v2 32% 1.6 21% 59% 4% 15%
Lorraine Ayre 30% 1.3 19% 64% 5% 12%
Terry Palmer 29% 1.5 25% 62% 5% 8%
Paul Stansel 28% 1.5 18% 77% 2% 3%
Gigi Giodani 26% 1.6 15% 81% 1% 2%
John Kerr 25% 0.7 11% 84% 2% 3%
Robin Reyes v1 23% 1.1 13% 50% 2% 35%
Patrick Butts v1 21% 0.8 18% 73% 4% 5%
Patrick Butts v2 20% 1.4 26% 66% 3% 6%
Harry Nguyen 20% 2.3 20% 72% 4% 4%

In the charts below we’ll quickly look at the relationship between the macros and their nutrient score.

Protein

This chart shows the relationship between protein intake and each person’s nutrient density score.  The average protein intake for this range of people following a low carb or keto diet is 2.1g/kg LBM or 23% of energy.

On the top left corner of the chart we have David who is following a plant based diet and intentionally getting lower levels of protein but also maximising vitamins and minerals from plant based foods.

On the bottom left we have a number of people following a therapeutic ketogenic diet targeting low protein and high fat.

As long as you are not trying to target low protein and high fat to generate higher blood ketones then it doesn’t seem to matter what your protein intake is.  Most people get enough protein to support their activity levels.

The chart below shows the nutrient density score versus protein (%).  Again, it seems that it’s hard to get high levels of nutrients if you are targeting minimal protein levels.

% insulinogenic

The story is similar with insulin load.  Reducing the insulin load of your diet to the point that your blood sugars normalise is a great idea, but less is not necessarily better.  We want to avoid really high insulin levels but not drive it so low that we don’t have enough nutrients to repair our muscles and organs.

Fat

High levels of fat do not guarantee high levels of nutrition.

Net carbs

It’s good to reduce the carbohydrate load of your diet to normalise your blood glucose levels, but again minimising is not necessarily the best idea and may be unnecessary if you are not managing diabetes.

Higher levels of isn’t necessarily bad either when it comes to nutrient density.  On the top right of the chart we have David who is striving for a nutrient dense plant based diet with about 35% net carbs while for contrast we have Robin’s baseline junk food diet which also has about 35% net carbs which has about the same nutrient density score as the very high fat therapeutic keto dietary approaches on the bottom left of the chart.

Fibre

Higher levels of fibre typically correlate with more nutrition (although you can get heaps of nutrients from shellfish and organ meats with minimal fibre intake).

Summary

  • A nutrient dense diet is not low in protein; however focusing on protein won’t necessarily guarantee great nutrition.
  • Foods with a lower energy density are often more nutrient dense. To maintain our body weight and growth we will need to add more energy dense foods (i.e. more non-fibre carb and / or fat).  Meanwhile, dialling back the energy density and forcing your body to use your stored body fat can be a good strategy for weight loss.
  • Reducing your carb intake or the insulin load of your diet can be useful if you are managing diabetes. However less is not necessarily better.
  • For the most part ensuring you are getting the harder-to-find micronutrients will maximising your diet quality without going to macronutrient extremes.

references

[1] https://www.youtube.com/watch?v=rYXF0l18ciI

[2] https://www.youtube.com/watch?v=ncVJfZZ7bTM

[3] https://www.youtube.com/watch?v=ZjUgX91VZpk

[4] http://perfecthealthdiet.com/2011/02/perfect-health-diet-weight-loss-version/

[5] https://www.ncbi.nlm.nih.gov/pubmed/18469287

[6] https://www.ncbi.nlm.nih.gov/pubmed/19785688

[7] http://www.tandfonline.com/doi/abs/10.1080/13590840220143062?journalCode=ijne20&

[8] https://www.ncbi.nlm.nih.gov/pubmed/19263591

[9] http://onlinelibrary.wiley.com/doi/10.1111/j.1467-789X.2007.00465.x/abstract

[10] https://www.ncbi.nlm.nih.gov/pubmed/20142823

[11] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988700/

[12] http://www.consumerlab.com/RDAs/#VitaminK

[13] http://www.consumerlab.com/RDAs/#VitaminK

[14] https://en.wikipedia.org/wiki/Menadione

[15] https://www.amazon.com/Nutrient-Bible-Henry-Osiecki/dp/1875239545

[16] http://www.consumerlab.com/RDAs/#B12

[17] https://www.amazon.com/Nutrient-Bible-Henry-Osiecki/dp/1875239545

[18] http://www.mayoclinic.org/drugs-supplements/vitamin-a/safety/hrb-20060201

[19] http://www.consumerlab.com/RDAs/

[20] https://www.121dietitian.com/never-eat-a-polar-bears-liver/

[21] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257872/

[22] http://www.consumerlab.com/RDAs/#VitaminC

[23] https://www.amazon.com/Nutrient-Bible-Henry-Osiecki/dp/1875239545

[24] https://chriskresser.com/do-high-protein-diets-cause-kidney-disease-and-cancer/

personalised nutrition… how to tweak the moving parts

There are a number of moving parts when it comes to optimising nutrition to suit your personal situation and goals.

image

General nutritional recommendations are standardised for simplicity.    However simple and standard doesn’t always work for everyone, particularly if you aren’t average, or don’t want to be average.

image

Just like people come in different shapes and sizes, their nutritional requirements vary widely depending on our situation and goals.

image

The Nutrient Optimiser is a moderately sophisticated tool to optimise food choices to suit different people with different goals.  However, I don’t want it to be a black box. Ideally I would like people to understand the inputs and how best to refine their nutrition to suit their goals.

The problem is black boxes is you get what you put in.  If you understand the inputs you’ll have a better chance of getting the output you’re after.

image10.png

This article discusses the various parameters that the Nutrient Optimiser manages.    Even if you’re not a user, it may be of interest to see how you can truly personalise your nutrition.  If you are already using the Nutrient Optimiser this article will help you understand how the algorithm uses various parameters to determine the optimal foods for you.

Multicriteria analysis

The first thing to understanding is the parameters used in the multi criteria analysis which is at the heart of the Nutrient Optimiser algorithm.  The image below illustrates the three main dials that you can adjust in the algorithm:

  • insulin load,
  • nutrient density, and
  • energy density.

image

A multi criteria analysis is a way to combine a number of priorities.

image

You do it all the time.  You want to have money in the bank but you also want to wear clothes and live under a roof.  So you balance these priorities depending on your goals.  You like to look and feel good but you also like to eat treats “occasionally”.  So you balance these priorities.

You want to have the proverbial cake and eat it too.  We make compromises all the time in life.  Living at the extremes is not always healthy or optimal.

I have written at length on the blog about the three key parameters of the system.  The pros and cons of having the various parameters at either extreme are highlighted in the table below.

Parameter Too high Too low
Insulin load Very high insulinogenic processed junk food that drives a blood glucose roller coaster. Super high fat therapeutic ketogenic foods do not provide high levels of the broad range of various essential vitamins and minerals.
Nutrient density Very high nutrient per calorie foods are also very low energy density.  For someone who is active and not looking to lose weight the most nutrient dense foods may not contain enough energy to provide satiety and prevent excessive fat loss. Low nutrient density processed junk food leads to a lack of satiety (nutrient hunger), overeating and a whole host of other health issues.
Energy density Energy dense foods are ideal for someone who is very active and looking to replenish energy, though not necessarily for someone who is less active or looking to lose weight. Low energy density foods are very bulky and hard to get enough energy  to maintain weight if you’re very active.

 

As you can see, these three parameters are important to different people to different degrees for different people.  The table below shows the ‘pre-set values’ in the system that have been found to work well for different goals.  More experienced users of the Nutrient Optimiser may want to tweak these values to refine the results to further suit their preferences.

approach insulin load nutrient density energy density total (absolute)
bulking -20% 60% -20% 100%
nutrient dense maintenance 20% 70% 10% 100%
weight loss (insulin resistant) 5% 70% 25% 100%
weight loss (insulin sensitive) 0 85% 15% 100%
therapeutic ketosis 15% 85% 0% 100%
diabetes and nutritional ketosis 10% 90% 0% 100%

You may have noticed that some of the parameters are negative (e.g. insulin load and energy density for the bulking approach).

While many people are eating too much, some athletes want to bulk up and / or get more energy “down the pie hole” to support their amazing feats of endurance.

Someone who is insulin resistant will want to minimise the insulin load of their diet, bodybuilders often want food to spike insulin around workouts to promote growth.  If you turn the nutrient density parameter negative you’ll get a list of processed junk food that you see in the supermarket aisles.

Adapting the system as you progress

People would ideally use these value as a starting point and refine them to suit your goals as you see fit and as you get fit.

image

Someone who starts out with  diabetes, is on three medications and hundreds of units of insulin may need to start on the high fat therapeutic keto approach to reduce the insulin load of their diet.

Someone like this who is looking to progressively refine their diet would come back and re-run the Nutrient Optimiser every two to four weeks to see their new dietary recommendations and refinements.  Through continual, gentle, non-judgemental and anonymous guidance (with the support of the Nutrient Optimiser Facebook group community as required) they would be able to progressively refine their diet.

In time, their blood glucose would come down with lower insulin load foods.  But then they still might want to lose weight so they would start to prioritise lower energy density foods rather than low insulin foods so much.  Then as their weight came closer to optimal and they were more active they might swing back to some focus on insulin load to enable them to have a more nutrient dense suit of foods.

Where do I start?

image

While there are a lot of parameters you can use, your average glucose levels and waist : height ratio is a pretty good starting place as shown in the table below.

A higher fat / ketogenic / low carb approach typically works really well for people who have elevated blood glucose and elevated insulin levels.  However, as blood glucose control and improved insulin sensitivity kicks in but you still need to lose weight energy density and nutrient density become more important.

The table below will give you a guide on which approach might be most appropriate based on your current weight blood glucose levels and body fat levels.

approach average glucose waist : height
(mg/dL) (mmol/L)
therapeutic ketosis > 140 > 7.8  
diabetes and nutritional ketosis 108 to 140 6.0 to 7.8  
weight loss (insulin resistant) 100 to 108 5.4 to 6.0 > 0.5
weight loss (insulin sensitive) < 97 < 5.4 > 0.5
bulking < 97 < 5.4 < 0.5
nutrient dense maintenance < 97 < 5.4 < 0.5

 

Food preferences

There are a plethora of different approaches to choosing foods.  Some of these are based around avoiding allergens (autoimmune, lactose intolerant, nut allergy etc) or digestive issues (zero carb, low fodmap).  Some are based on religious belief systems (e.g. vegetarian).

Although the ideal approach is going to be to prioritise the most nutrient dense foods available, we have also created options to suit your preferences.

The recommended foods list will be based on the remaining top 10% foods.   Noting your preferences up front will save you sifting through a long list of foods that you may not want to eat.

option details
most nutrient dense No limitations
zero carb Eliminates vegetables, fruit, grains and any non-animal based sources of carbohydrate.
vegan / plant based No animal products or animal derived products such as dairy or eggs.
vegetarian No animal products but includes eggs and
paleo No grains, dairy or processed foods.
pescatarian Vegetarian plus seafood
gluten intolerant No grain products
nut allergy Excludes nuts
no salicylates  
no organ meats Excludes organ meats.
no offall  

Should I log my supplements?

No!

image

But why not?

The goal of the Nutrient Optimiser is to identify nutrient deficiencies and whole foods to fill them.  If you don’t manage to fill the gaps, then you will know which nutrient you might need to supplement.

There is a credible line of thinking that the reason that many processed foods are fortified with B vitamins and the like is that we would find these foods unpalatable and lose our appetite without the fortification.[1] [2] [3] [4] [5]  With fortification, we associate these otherwise nutrient devoid processed foods with essential vitamins and hence we are happy to keep eating them.  Unfortunately, they don’t also contain the full range range of beneficial nutrients that whole foods possess (i.e. essential, non-essential and the ones that we haven’t discovered yet) so fortified foods are unlikely to lead to optimal health.

If you are taking a ton of supplements then you may be able to continue to happily eat large quantities of nutrient poor processed food that you would otherwise lose your taste for.  If you cut back to foods that don’t need to be fortified or flavoured to make up for their nutritional deficiencies you will be able to hear your appetite again and let it guide you to whole foods that contain the nutrients you need at a particular point in time.

Regardless of whether this narrative is correct I think it’s safer to get your nutrients from real food.  Supplements supplement.  They shouldn’t be the foundation.

image

If you still can’t quite cover off on the nutrients you need from real food, you can supplement in a targeted manner once you’ve got the foundation of whole foods in place.

Micronutrients

The Nutrient Optimiser compares the nutrients you are getting to the recommended daily allowance (RDA) or daily recommended intake (DRI).  Different RDA / DRIs are commonly given for different situations including  whether you are male or female and if you are pregnant or breastfeeding.

Recommended micronutrient levels for men are typically greater than those for women (other than iron, which is greater for women).  Levels of micronutrients during pregnancy and breastfeeding are greater for obvious reasons.  These values (for adults) are included in the Nutrient Optimiser.

You may have blood tests that indicate you are deficient or sufficient in particular nutrients.  You may also be able to use tools like the Organic Acids Test or the NutrEval test to identify any nutrient deficiencies that you need to prioritise.

If you have this data you can override the recommendations from your food log to focus the nutrients you know you are low in.  For example you may have blood tests that you are getting a lot of vitamin D from the sun so you could decrease your dietary targets or you may have blood tests that suggest you are low in iron due to poor absorption so you can increase your dietary targets.

The daily recommended intake levels for vitamins, minerals and essential fatty acids are shown in the table below.  Keep in mind that these are the recommended minimum levels to prevent the diseases of malnutrition.  There is generally no harm in being above these levels in a particular nutrient if you are getting it from real food.  However if a certain nutrient is super high there is a chance that you are neglecting other nutrients.

Vitamin men women pregnant breastfeeding
B1 (Thiamine) (mg) 1.2 1.1 1.4 1.4
B12 (Cobalamin) (µg) 2.4 2.4 2.6 2.8
B2 (Riboflavin) (mg) 1.3 1 1.4 1.6
B3 (Niacin) (mg) 16 14 18 17
B5 (Pantothenic Acid) (mg) 5 5 6 6
B6 (Pyridoxine) (mg) 1.3 1.2 1.9 2
Folate (µg) 400 400 600 500
Vitamin A (IU) 3000 3000 3000 3000
Vitamin C (mg) 90 75 85 120
Vitamin D (IU) 600 600 600 600
Vitamin E (mg) 15 15 15 19
Vitamin K (µg) 120 90 90 90
Calcium (mg) 1000 1300 1000 1000
Copper (mg) 0.8 0.8 1 1
Iron (mg) 8 18 27 10
Magnesium (mg) 400 310 350 310
Manganese (mg) 5.5 5 5 5
Phosphorus (mg) 1000 1000 1000 1000
Potassium (mg) 3800 2800 2800 3200
Selenium (µg) 55 55 60 70
Sodium (mg) 460 460 460 460
Zinc (mg) 11 9 11 12
Omega-3 (g) 1.6 1.1 1.4 1.3

Amino acids

There is a lot of passion around the topic of optimal protein levels.

I think the long and short of it is that if you focus on getting the harder to find nutrients you won’t need to worry too much protein.  However if you focus on getting particularly high or low levels of protein you will risk missing out on getting adequate vitamins and minerals.

However, unless you’re actively trying to avoid protein you will likely be getting enough.  Conversely, unless you’re trying to hammer down to get extra protein with powders, you will find it hard to get too much protein whole foods.

As long as you’re not living exclusively off hyperpalatable processed foods I think you can generally trust your appetite to make sure you’re getting enough protein.  People who are active and working out will need more protein to support muscle growth and recover.  People who are sedentary will need less protein (as well as fat and carbs).

The Nutrient Optimiser takes your weight and LBM into account to tell you how you’re positioned against normal healthy protein intake levels which are noted in the table below.

Scenario % calories g/kg LBM
minimum (starvation) 6% 0.4
RDI/sedentary 11% 0.8
typical 16% 1.2
strength athlete 24% 1.8
maximum 35% 2.7

To take things another step further, the Nutrient Optimiser also looks at the adequacy of the individual amino acids.  If you’re following a lower carb or paleo approach these are likely to be adequate.  If you’re vegan, fasting or aiming for therapeutic ketosis, the Nutrient Optimiser may encourage you to seek our more of specific amino acids if you’re not getting enough.  Although typically most people get enough of the amino acids unless they are actively trying to avoid protein.

The table below shows the minimum daily requirement of the various essential amino acids in terms of milligrams per kilogram of body weight as well as for someone who is 70kg and 100kg.  These target levels have been included in the Nutrient Optimiser based on your total body weight.  If you are deficient in any of these individual amino acids the Nutrient Optimiser will highlight foods that will fill the gaps.  The Nutrient Optimiser also checks to make sure you’re getting enough protein overall based on your lean body mass.

Amino acid(s) mg per kg body weight mg per 70 kg mg per 100 kg
Histidine 10 700 1000
Isoleucine 20 1400 2000
Leucine 39 2730 3900
Lysine 30 2100 3000
Methionine

Cysteine

10.4 + 4.1 (15 total) 1050 1500
Phenylalanine

+ Tyrosine

25 (total) 1750 2500
Threonine 15 1050 1500
Tryptophan 4 280 400
Valine 26 1820 2600

Common micronutrient deficiencies

Managing micronutrients is a bit of a moving feast.  You could run a reasonable argument that the various daily recommended intakes (DRI) are based on limited knowledge and understanding.  Realistically in the early stages of understanding nutrients and how they work in our body.

For this reason, the Nutrient Optimiser doesn’t try to hit the DRI for every single nutrient.  That would be unrealistic with real food (chemical concoctions like Soylent or other meal replacement products, might get closer, but who knows what you’ll be missing out on if you only get what we currently understand to be the essential nutrients).  Instead we want to highlight the nutrients that you are currently getting in smaller quantities and help you focus on the foods that contain more of those harder to find nutrients.

The chart below shows common micronutrient deficiencies.  The majority of people are not getting adequate amounts of vitamin D, vitamin E, magnesium, calcium, vitamin A and zinc.  However your situation will be unique.

image

The Nutrient Optimiser will progressively train you to incorporate new foods and rebalance your diet to fill your nutritional gaps.  When you get to the point that most of your nutrient requirements meet the minimum from real food you might just find your appetite and cravings for particular nutrients start to diminish.

If you’re interested in checking out how the Nutrient Optimiser has worked for a number of other people check out the Nutrient Optimiser Facebook Page or the Nutrient Optimiser site for more details on the tool and how to be involved.

2017-05-23

 

references

[1] http://freetheanimal.com/2015/10/fortification-obesity-refinements.html

[2] http://freetheanimal.com/2015/06/enrichment-theory-everything.html

[3] http://freetheanimal.com/2016/05/enrichment-promotes-everything.html

[4] http://www.audible.com.au/pd/Health-Personal-Development/The-Dorito-Effect-Audiobook/B00WVLVT0Q

[5] https://www.amazon.com/Dorito-Effect-Surprising-Truth-Flavor/dp/1476724237

are ketones insulinogenic and does it matter?

There has been a lot of hype around the interwebs lately about exogenous ketones and whether they are health promoting, particularly for people with conditions that relate to excess insulin such as diabetes, traumatic brain injury, Alzheimer’s, cancer, epilepsy, obesity etc.

exogenous ketone are trendy
exogenous ketones, Pruvit and Keto//OS are becoming trendy.

Exogenous ketones are becoming trendy, particularly in the low carb scene!

image

A couple of people recently asked me whether I thought exogenous ketones are insulinogenic.

Roger Unger’s 1964 paper the Hypoglycemic Action of Ketones.  Evidence for a Stimulatory Feedback of Ketones on the Pancreatic Beta Cells[1] indicates that ketone levels are controlled by insulin and that ketones suppress lipolysis:

Ketone bodies have effects on insulin and glucagon secretions that potentially contribute to the control of the rate of their own formation because of antilipolytic and lipolytic hormones, respectively.  Ketones also have a direct inhibitory effect on lipolysis in adipose tissue.[2]

It seems that exogenous ketones are indeed insulinogenic to some degree.

But how do we test this hypothesis to find out whether they are just slightly insulinogenic like fats or more insulinogenic like carbohydrates?

image29

how to test the insulin response to exogenous ketones in someone with Type 1 Diabetes

If someone with Type 1 Diabetes stops taking their insulin both their blood glucose levels and blood ketones spiral out of control as they slip into ketoacidosis[3] which can be dangerous and fatal before very long without exogenous insulin injection.[4]   In metabolically healthy people,  high levels of ketones suppress mobilisation of body fat (lipolysis).[5]

In someone with Type 1 Diabetes, taking exogenous insulin brings both ketones and blood glucose under control.  So, based on what we see in people with Type 1 Diabetes, it seems logical that exogenous ketones would provoke an insulin response to keep ketones and glucose under control.

One way to test whether exogenous ketones are insulinogenic would be to have a Type 1 Diabetic to take a significant amount of exogenous ketones and monitor how much additional insulin they need to keep the continuous blood glucose monitor stable with the same amount of calories in glucose.

I initially became interested in exogenous ketones after hearing a number of podcasts with Patrick Arnold and Dominic D’Agostino thinking that it may be a useful alternative source of energy that does not rely on insulin for my wife, who has Type 1 Diabetes.  However, the one time she tried it resulted in such bad gut distress she never touched it again.  So scratch that n = 1.

food insulin index testing with exogenous ketones

Another way to test whether exogenous ketones are insulinogenic would be to run a food insulin index test[6] [7] using ketones rather than food.  This would involve giving 1000kJ of exogenous BHB (e.g. 48g of KetoCaNa) and measuring the insulin response over two or three hours.

The chart below compares the results of previous food insulin index tests undertaken for different foods.[8]   Comparing the area under the curve insulin response for the exogenous ketones to the insulin area under the curve for glucose would give you the insulin index for exogenous beta hydroxybutyrate.

image

I am surprised that the companies marketing exogenous ketones to people with metabolic issues, as part of their due diligence, haven’t already done this testing to understand to what degree exogenous ketones are insulinogenic.

but wait, the food insulin index testing with exogenous ketones has already been done!

Then I came across this figure in a paper, Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes (Cox et al, 2016)[9],  where they have effectively done the food insulin index testing with exogenous ketones.

image

Thirty-nine athletes took an isocaloric dose of ketone esters, carbs and fat in three different sessions. In the chart on the right (G) we can see that the ketones provoked about half the insulin response compared to the carbohydrate drink.  This test is different to normal food insulin index testing in that the participants started to exercise ten minutes after taking the drinks (i.e. at T = 0) at which point insulin and glucose start to decline.

updated insulin load formula, including exogenous ketones

The chart below shows the relationship between the food we eat and our insulin response based on the previous food insulin index testing.

image

In lieu of more thorough food insulin index testing, I think we can update the insulin load calculation formula to:

insulin load = carbohydrate – fibre + 0.56 * protein – 0.725 * fructose + 0.5 * exogenous ketones

It appears that exogenous ketones provide about half the insulinogenic impact of carbohydrates (i.e. about the same as protein).


So, if you’re avoiding protein because of its impact on insulin, should you also consider exogenous ketones for the same reason?

Exogenous ketones stimulate insulin, but BHB also inhibits lipolysis directly via the nicotinic acid receptor PUMA-G in adipose.[10]

While exogenous ketones may be equally as insulinogenic as protein, they’ll also be a counterproductive use of insulin.

Whereas the insulin response to protein is a positive use of insulin to build and repair muscle, with exogenous ketones, insulin simply reduces oxidation of other fuels to allow ketones to be burned.

Exogenous ketones displace the burning of other substrates.  You know what else displaces the burning of other substrates?  Glucose. Carbs reduce the amount of fat you burn. Similarly, exogenous ketones displace both fat and carbs/glucose.

That’s a double whammy in the wrong direction! Substrate competition is key.

Mike Julian

total energy = glucose + ketones

In a healthy metabolism, endogenous ketones are generated as fat stores are mobilised to compensate for a decreased energy availability from glucose.  When glucose is not available, ketones come to the rescue to ensure survival.

If you’re insulin resistant, you might have trouble releasing free fatty acids due to the high levels of insulin circulating in your bloodstream.  This inability to access your own fat stores will reduce your ability to create ketones and likely lead you to be more hungry and eat more than you otherwise would if you were insulin sensitive.  If you are insulin sensitive you can more easily access your own body fat stores.

image

This chart demonstrates the concept of total energy (i.e. glucose + ketones) using more than a three thousand combined ketone and glucose readings from people following a low carb/keto lifestyle.  Other than in the extremes of extended fasts or major feasting, the body seems to use insulin to maintain a homoeostasis of around 5 to 6 mmol/L of total energy in the blood.

image

On the left-hand side of the chart, when our blood glucose levels drop, we get a rise in ketones, but an increase in autophagy and all the good stuff that comes with fasting and ketosis.

On the right-hand side of the chart, when we drive our total energy high with excess energy (be it from processed carbs, Bulletproof Coffee, or exogenous ketones) the body releases insulin to stop stored body fat and glucose being released into our bloodstream.

People with the highest levels of metabolic health tend to walk around with a lower total energy in their bloodstream.  It seems you don’t need to buffer lots of energy in the blood if you can easily mobilise body fat and glycogen stores quickly when required.

Having high levels of energy sitting around in the blood stream is far from ideal and leads to glycation in the case of high blood glucose levels and oxidation in the case of free fatty acids.

image

The total energy concept also seems to hold up with laboratory testing in rat pancreas islet cells, where exogenous ketone bodies promoted insulin secretion when there was greater than 5.0 mmol/L of glucose.[11]

image

It appears that if your blood glucose levels are greater than 5.0 mmol/L (or 90 mg/dL), then exogenous ketones will be insulinogenic (at least if you’re a rat, but we have no reason to believe this wouldn’t occur in humans as well).

So if your blood glucose levels are greater than 5.0mmol/L (or 90 mg/dL),  then those expensive exogenous ketones will be working just like a quick burning insulinogenic fuel, just like a dose of carbs.

Image result for cycling gel

do exogenous ketones “help” with fasting?

If exogenous ketones raise insulin and reduce blood glucose, then where does the glucose go?  It gets stuffed back into the liver. 

Think about all of these people who fast with the intent of depleting liver glycogen but drinking Keto/OS. They’re literally preserving glycogen stores! No wonder we were seeing whacky glucose and ketone response to fasting with exogenous ketones.

Instead of the normal trajectory of a fast that would result in depleted liver glycogen we see exogenous ketones keeps this from happening, so you would get purges of glucose out of the liver throughout the fast when people were fasting using exogenous ketones.”

Mike Julian

Let’s take a quick look at what Mike means by “the normal trajectory of glucose”.    In the chart below, we can see that blood glucose levels drop and ketone increase in four people.

image

Where things get interesting is when you step look at the longer-term glucose and ketone trajectory of the fourth person who was taking exogenous ketones during the fast.

image

What’s causing this anomaly in glucose and ketone response?   Is it a unique level of insulin resistance, or could this simply be explained by the use of exogenous ketones which are down regulating release of free fatty acids and endogenous ketone production?

image

One theory is that exogenous ketones are switching off lipolysis, which drives the liver to release more glucose and ramp up gluconeogenesis to fuel the system during fasting?

The glucose : ketone index is the measure that Dr  Thomas Seyfried encouragescancer patients to use during a fast to measure its therapeutic effect.  The lower the better.  For most people the GKI continues to drop during extended fasting, but in this case the GKI dropped and then starts to rise over time when taking exogenous ketones.

image

I would like to see some more thorough studies to understand if this is typical in people taking exogenous ketones during extended fasting.  It’s not conclusive, but n = 1s are useful to build a hypothesis that can be tested in a more controlled environment.

image26.png

oxidative priority

Ray Cronise and David Sinclair recently published an intriguing article, Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease (2016)[12] where they detailed the basis for the oxidative priority of different fuel substrates.

image

  1. Alcohol will be burned first because the body has limited storage capacity for it. It sees it as a toxin that needs to be cleared.
  2. Protein will be burned second because you can only store a few hundred calories worth of amino acids in the bloodstream (though I think most people struggle to overeat protein when from whole food sources).
  3. Carbohydrate will then be burned before we can access our virtually unlimited stores of body fat.

null

So, I think it would be logical that exogenous ketones would be first in line (before or just after alcohol) to be burned off because the body has no way of storing the exogenous ketones other than circulating in the blood stream.

image16-e1493529755182.png

So, it seems that exogenous ketones neither lower insulin nor promote fat burning.  They’re just another fuel that will be burned before the fat on your bum and your belly.

image

do exogenous ketones boost exercise performance?

Exogenous ketones in sports performance is an interesting area of research.  Rumour has it the Tour de France cyclists and British Olympic rowers are using ketone ester drinks (though it’s worth noting that the people spreading these rumours are selling the ketone esters).[13]

Some people use exogenous ketones as a preworkout, like caffeine, to give them a cognitive boost.  Research by Richard Veech and Kieren Clarke suggests that there may be a small athletic boost if you provide both exogenous ketones and exogenous glucose at the same time to provide a “dual fuel”.[14] [15]  This situation provides a fuel oversupply that would force the body to burn off the excess fuel quickly.

Dr Mike T Nelson suggest that driving a chronic energy surplus from high ketones and high glucose might be problematic in the long term as there is no precedent in nature for this condition.[16]

I have dabbled with exogenous ketones (i.e. KetoCaNa, Pruvit and the Ketone Aid ketone ester).  The chart below shows  how my blood ketones rose to 3.5mmol/L and then back down to normal levels after about 3 hours.  Note how my body tries to remove the excess energy from the blood stream and bring the total energy back down to around 5.0mmol/L.

image

I didn’t find a massive boost in performance in my workouts with any of the ketone products.  My best performance is when I was fasted without supplementation and it seems I could easily access my fat stores and breath more effortlessly.

I’m far from a high level athlete, but when I perform at my best cycling or in my kettlebell workouts, my breathing seems effortless and my time to exhaustion increases.   When we are insulin sensitive and / or don’t have excess glucose in our system and burn more fat for fuel we use less oxygen than when we burn glucose for energy.[17]  That reduction in oxygen usage is critical to make sure you don’t get out of breath and fatigue.  It seems that too much exogenous ketones or glucose in the system will mean that we’re less reliant on burning our own body fat.

I think the future of exogenous ketones in athletic performance will revolve around finding the right dose to boost ketones enough to get a performance benefit, without switching off lipolysis, which is where the real performance powerhouse lies.   If you put in so much fuel in line in front of your virtually unlimited fat stores, then you may risk gassing out because you can’t access your fat stores as easily.

Perhaps someone who is a normal carb burner might benefit from having ketones raised to the 3 or 4 mmol/L range, while someone who is more fat adapted might benefit more with ketones in the 1 to 2 mmol/L range so as to get a dual fuel boost without switching off fat burning?

It’s still early days.  Time and more experimentation will tell.

does it matter?

If you’re metabolically healthy and you enjoy the brain buzz of exogenous ketones more than alcohol or caffeine and want to use exogenous ketones as a pre-workout, then I say go your hardest if you can afford it.

However, if you are looking for improvements in your metabolic health or magical weight, I think you should be cautious.

image19.png

Companies like Ketopia are marketing exogenous ketones as a “bridge” through the keto flu, which I think is a more ethical approach (although many people say you can eliminate the ‘keto flu’ with good mineral supplementation).

image

But you probably haven’t heard of Ketopia, because selling seven days’ worth of exogenous ketones isn’t a great business model in comparison to getting people to sign up for an ongoing subscription as a distributor buying thousands of dollars of ‘inventory’ up front so they can take it… Every.  Single.  Day.

image

Perhaps when exogenous ketones are no longer the realm of overhyped multi level marketing campaigns people will be able to experiment with exogenous ketones and find whether they live up to any of the claims and are indeed worth the money?  This is starting to happen now with Julian Baker’s InstaKetones coming in at about one sixth of the price of Pruvit’s products.

If you’re using exogenous ketones with the hope of reducing insulin levels or reversing metabolic disease (e.g. Type 2, cancer, Alzheimer’s, obesity), then maybe think again.  Exogenous ketones may alleviate your symptoms while they’re in your system (about 2 hours), but I fear they might worsen the conditions that people are using them for in the hope of improved metabolic health.

Mike Sheridan’s article in T-Nation makes a number of excellent points:

Ketones may be depressing dieters’ hunger and giving them a hit of energy and cognitive enhancement, but it’s INHIBITING their ability to burn fat, providing zero nourishment, and doing nothing for their metabolic health. There’s an assortment of evidence suggesting that it’s probably making things worse.

Think of exogenous ketones kind of like alcohol. When they’re consumed, everything is stored and nothing else is burned. So any lipolysis (fat burning) that would be taking place is halted; any glucose and fatty acids in your blood that were circulating are stored; and the ingested ketones are burned until there aren’t any left.

But suggesting individuals already fasting, restricting calories, or cutting carbs will get anything other than a brain buzz is misleading. And to serve up exogenous ketones to an obese, insulin-resistant general population with promises of fat-burning and disease prevention is potentially damaging.

Sure, it might suppress hunger and give a damaged brain a useable fuel source, but what happens when pre-diabetic Pete starts adding ketones to his glucose-rich blood? Or anaerobic Andy continues reloading with the same amount of carbs post-workout even though the liver glycogen he normally burns during his sessions is now suppressed?[18]

Sure, exogenous ketones might provide energy to the muscles or brain cells of someone with Type 2 or Alzheimer’s who can’t use glucose well because of decades of hyperinsulinemia.  But, if someone already has super high glucose and insulin levels, will they worsen the condition by chasing high ketone levels with large doses of insulinogenic exogenous ketones?

If someone is trying to shrink their brain tumour by reducing growth stimulating insulin, will ingesting large amounts of exogenous insulinogenic ketones accelerate growth in the brain tumors?  Recent studies suggest that this may in fact be the case.[19]

image23.png

At the current rate, it looks like we will be able to confirm the long term effects of exogenous ketones sooner rather than later.


But by then, the people running the MLMs will have driven off into the sunset and be on to another scheme.

image

image11.jpg

image17.jpg

2017-04-30 (14).png

good news… endogenous ketones for free!

The good news is that all the benefits of endogenous ketosis is freely available risk free!  It’s not easy, but you can get the benefits of ketosis (e.g. autophagy, apoptosis, increased NAD+, mitogenesis etc) by keeping the insulin load of your normal diet down to the point that you can maintain normal blood glucose and insulin levels, then occasionally you can push the time between meals than usual in order to derive some extra benefits (i.e. intermittent fasting).

 

references

[1] https://www.dropbox.com/s/287bftreipfpf29/jcinvest00459-0078.pdf?dl=0

[2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC441933/

[3] http://www.webmd.com/diabetes/type-1-diabetes-guide/ketoacidosis

[4] http://www.webmd.com/diabetes/tc/diabetic-ketoacidosis-dka-topic-overview#1

[5] https://www.dropbox.com/s/hnycwc6b5pw37hr/Inhibition%20of%20Ketogenesis%20by%20Ketone%20Bodies%20in%20Fasting%20Humans.pdf?dl=0

[6] http://ajcn.nutrition.org/content/66/5/1264.abstract

[7] http://ses.library.usyd.edu.au/handle/2123/11945

[8] http://ajcn.nutrition.org/content/90/4/986.short

[9] https://www.ncbi.nlm.nih.gov/pubmed/27475046

[10] https://www.dropbox.com/s/j66y3osyasvq3b3/KETONES%20and%20NICOTINIC%20ACID%20receptor.pdf?dl=0

[11] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1152056/

[12] https://www.ncbi.nlm.nih.gov/pubmed/27869525

[13] http://www.nutraingredients.com/Markets-and-Trends/Ketones-get-rough-ride-at-Tour-de-France

[14] http://journals.lww.com/acsm-msse/Abstract/publishahead/A_Ketone_Ester_Drink_Increases_Postexercise_Muscle.97232.aspx

[15] http://www.nourishbalancethrive.com/blog/2016/10/10/instant-ketosis-04-62mm-30-minutes/

[16] http://www.nourishbalancethrive.com/podcasts/nourish-balance-thrive/high-ketones-and-carbs-same-time-great-performance/

[17] http://www.freemocean.com/2017/02/22/oxygen-and-your-dna/

[18] https://www.t-nation.com/diet-fat-loss/avoid-this-ketogenic-rip-off

[19] https://link.springer.com/article/10.1186/s40170-017-0166-z

 

post updated July 2017

chocolate orange smoothie

This recipe is from Carrie Brown’s Eat Smarter! Smoothies and Sides.  While not particularly low carb due to the orange, it packs a solid amount of nutrients.

ingredients

  • 1 cup / 8 fl oz. unsweetened coconut
  • milk ⅔ cup / 2 oz. / 55g powdered egg white
  • 1 oz. / 30 g unsweetened cocoa powder
  • 2 oranges, take zest from one orange before peeling
  • ½ tsp. sea salt
  • ½ tsp. orange essence
  • 1 head Romaine lettuce
  • Xylitol as needed to sweeten
  • ½ tsp. guar gum

directions

  1. Place ingredients in the blender in the order listed, except guar gum.
  2. Blend on high until completely smooth.
  3. Tap the guar gum through the hole in the blender lid while the blender is still running and blend for 5 seconds.

15174403_1287439231297830_814297128_n

The micronutrient breakdown is shown below indicating that it does quite well in terms of vitamins, minerals and protein.

2016-11-19-20

The table below shows the nutritional data per 500 calorie serving.

net carbs insulin load carb insulin fat protein fibre
27g 56g 48% 16% 53g 26g