Tag Archives: insulin load

optimising protein and insulin load

  • “Low carb”, “ketogenic” or “nutrient dense” mean different things to different people. Defining these terms numerically can help us to choose the right tool for the right application.
  • Decreasing the insulin load of your diet can help normalise blood glucose levels and enable your pancreas to keep up. However, at the same time a high fat therapeutic ketogenic approach is not necessarily the most nutrient dense option, and may not be optimal in the long term, particularly if your goal is weight loss.
  • Balancing insulin load and nutrient density will enable you to identify the right approach for you at any given point in time.
  • This article suggests ideal macro nutrient, protein and insulin load, and carbohydrate levels for different people with different goals to use as a starting point as they work to optimise their weight and / or blood glucose levels.

context matters

Since I started blogging about the concepts of insulin load and proportion of insulinogenic calories many people have asked:

“What insulin load should I be aiming for?” 

Unfortunately, it’s hard to give a simple answer without some context.

The answer to this question depends on a person’s current metabolic health, age, activity level, weight, height and goals etc.

This post is my attempt to provide an answer with some context.

image16

disclaimers

Full disclosure…  I don’t like to measure the food I eat.  I have developed the optimal foods lists to highlight what I think are the best foods to suit different goals and levels of metabolic health.

I think food should be nutritious and satiating.  If you goal is to lose weight it will be hard to overeat if you limit your food choices to things like broccoli, celery, salmon and tuna.

At the same time, some people like to track their food.  Tracking food with apps like MyFitnessPal or Cron-O-Meter can be useful for a time to reflect and use as a tool to help you refine your food choices.  If you’re preparing for a bodybuilding competition you’re probably going to need to track your food to temporarily override your body’s survival to force it to shed additional weight.

Ideal macronutrient balance is a contentious issue and a lot has already been said on the topic.  I’ll try to focus on what I think I have to add to the discussion around the topics of insulin load and nutrient density.

If you want to and skip the detail in the rest of this article, this graphic from Dr Ted Naiman does a good job of summarising optimal foods and ideal macronutrient ranges.   If you’re interested in more detail on the topic, then read on.

image17

insulin is not the bad guy

The insulin load formula was designed to help us more accurately understand the insulin response to the food we eat, including protein and fibre.

insulin load = total carbohydrates – fibre + 0.56 * protein

The first thing to understand is that insulin per se is not bad.  Insulin is required for energy metabolism and growth.  People who can’t produce enough insulin are called Type 1 Diabetics and typically don’t last long without insulin injections after they catabolise their muscle and body fat.

Insulin only really becomes problematic when we have too much of it (i.e. hyperinsulinemia[1]) due to excess processed carbohydrates (i.e. processed grains, added sugar and soft drinks) and/or a lack of activity which leads to insulin resistance.

The concepts of insulin load and proportion of insulinogenic calories can provide us with a better understanding of how different foods trigger an insulin response and how to quantitatively optimise the insulin load of our diet to suit our unique situation and goals.

image20

different degrees of the ketogenic diet

Words like “ketogenic”, “low carb” or “nutrient dense” mean different things to different people.   This is where using numbers can be useful to better define what we’re talking about and tailor a dietary approach.  For clarity, I have numerically defined a number of terms that you might hear.

image18

ketogenic ratio

The therapeutic ketosis community talk about a “ketogenic ratio” such as 3:1 or 4:1 which means that there are three or four parts fat (by weight) for every part protein plus carbohydrate.[2]

For example, a 3:1 ketogenic diet may contain 300g of fat plus 95g of protein with 5g of carbs.  This ends up being 87% fat.  A 4:1 ketogenic ratio is an even more aggressive ketogenic approach that is used in the treatment of epilepsy,[3] cancer or dementia and ends up being 90% fat.

These levels of ketosis is hard to achieve with real food and is hard to sustain in the long term.  Hence, it is typically used as a short term therapeutic treatment.

ratio of fat to protein

People in the ketogenic bodybuilding scene (e.g. Keto Gains) or weight loss might talk about a 1:1 ratio of fat to protein (by weight) for weight loss.    A diet with a 1:1 ratio of fat to protein could be 120g of fat plus 120g of protein.  If we threw in 20g of carbs this would come out at 66% fat (which is still pretty high by mainstream standards).   A 1:2 protein:fat ratio would end up being around 80% fat.

protein grams per kilogram of lean body weight

Some people prefer to talk in terms of terms of percentages or grams of protein per kilo of lean body mass.  For example:

  • The generally accepted minimum level of protein is 0.8g/kg/day of lean body mass to prevent malnutrition.[4] This is based on a minimum requirement of 0.6kg to maintain nitrogen balance and prevent diseases of malnutrition plus a 25% or two standard deviations safety factor.[5]
  • In the Art and Science of Low Carb Performance Volek and Phinney talk recommend consuming between 1.5 and 2.0g/kg of reference body weight (i.e. RW). Reference weight is basically your ideal body weight say at a BMI of 25kg/m2.  So, 1.5 to 2.0kg RW equates to around 1.7 to 2.2g/kg lean body mass (LBM).
  • There is also a practical maximum level where people just can’t eat more lean protein (i.e. rabbit starvation[6]) which kicks in at around 35% of energy from protein.

The table below shows a list of rule of thumb protein quantities for different goals in terms of grams per kilogram of lean body mass and as a percentage of calories assuming weight maintenance.[7]

scenario % calories g/kg LBM
minimum (starvation) 6% 0.4
RDI/sedentary 11% 0.8
typical 16% 1.2
strength athlete 24% 1.8
maximum 35% 2.7

gluconeogenesis

You may have heard that body will convert ‘excess protein’ to glucose via gluconeogenesis, particularly if there is minimal carbohydrates in the diet and/or we can’t yet use fat for fuel.

For some people this is a concern due to elevated blood glucose levels, but it may also mean that more protein is required because so much is being converted to glucose that you need more to maintain muscles growing your muscles.  As we become more insulin sensitive we may be able to get away with less protein because we are using it better (i.e. we are growing muscles rather than making glucose).

Most people eat more than the minimum level of protein to prevent malnutrition.  People looking to gain muscle mass will require higher levels.  Although keep in mind you do need to be exercising to gain muscle, not just eating protein.

Ensuring adequate protein and exercise is especially important as people age.  Sarcopenia is the process of age related muscle decline which is exacerbated in people with diabetes.

Sadly, many old people fall and break their bones and never get up again.   When it comes to longevity there is a balance between being too big (high IGF-1) and too frail (too little IGF-1).

image03

carbohydrate counting

Then there is carb counting.

  • People on a ketogenic approach tend to limit themselves to around 20g (net?) carbohydrates.
  • Low carbers might limit themselves to 50g carbs per day.
  • A metabolically healthy low carb athlete might try to stay under 100g of carbs per day.

Limiting non-fibre carbohydrates typically eradicates most processed foods (e.g. sugar, processed grains, sodas etc).   Nutrient density increases as we decrease the amount of non-fibre carbohydrates in our diet.

image01

protein, insulin load and nutrient density

In the milieu of discussion about protein I think it’s important to keep in mind that minimum protein levels to prevent the diseases of malnutrition may not necessarily optimal for health and vitality.

Protein is the one macronutrient that correlates well with nutrient density.  Foods with a higher percentage of protein are typically more nutrient dense overall.

image22

Considering minimum protein levels may be useful if you are looking to drop your energy intake to the bare minimum and while still providing enough protein to prevent loss of lean muscle mass (e.g. a protein sparing modified fast).   However, if you are looking to fill up the rest of your energy intake with fat for weight maintenance then you should be aware that simply eating foods with a higher proportion of fat will not help you maximise nutrient density.

Practically though very high levels of protein will be difficult to achieve because they are very filling, thus it is practically difficult to eat more than around 35% of your energy from protein.  Protein is also an inefficient fuel source meaning that you will lose around 25% of the calories just digesting and converting it to glucose via digestion and gluconeogenesis.

If you are incorporating fasting then I think you will need to make sure you are getting at least the minimum as an average across the week, not just on feasting days to maintain nitrogen balance.  That is,  you might need to try to eat more protein on days you are eating.

what is ketosis?

“Ketogenic” simply means “generates ketones”.

An increase in ketosis occurs when there is a lack of glucogenic substrates (i.e. non-fibre carbohydrates and glucogenic protein).  It’s not primarily about eating an abundance of dietary fat

I think reducing insulin load (i.e. the amount of food that we eat that requires insulin to metabolise), rather than adding dietary fat, is really where it’s at if you’re trying to ‘get into ketosis’.   We can simply wind down the insulin load of our diet to the point that out blood glucose and insulin levels decrease and we can more easily access our stored body fat.

insulin load = total carbohydrates – fibre + 0.56 * protein

Whether a particular approach is ketogenic (i.e. generates ketones) will depend on your metabolic health, activity levels and insulin resistance etc.

Whether you want to be generating ketones from the fat on your excess belly fat rather than your plate (or coffee cup) is also an important consideration if weight loss is one of your goals.

While people aiming for therapeutic ketosis might want to achieve elevated ketone levels by consuming more dietary fat, most people out there are just looking to lose weight for heath and aesthetic reasons.  For most people, I think the first step is to reduce dietary insulin load until they achieve normalised blood glucose levels (i.e.  average BG less than 5.6mmol/L or 100mg/dL, blood ketones greater than 0.2 mmol/L).   People with diabetes often call this “eating to your meter”.

Once you’ve achieved normal blood glucose levels and some ketones the next step towards weight loss is to increase nutrient density while still maintaining ketosis.  Deeper levels of ketosis do not necessarily mean more fat loss, particularly if if you have to eat gobs of eating processed fat to get there.

Ray Cronise and David Sinclair recently published an article “Oxidative Priority, Meal Frequency, and the Energy Economy of Food and ACtivity:  Implications for Longevity, Obesity and Cardiometabolic Disease”  which does an interesting job of looking at the ‘oxidative priority’ of various nutrient and demonstrate that the body will burn through nutrients in the following order:

  1. alcohol,
  2. protein (not used for muscle protein synthesis),
  3. non fibre carbohydrate, and then
  4. fat.

What this suggests to me is that if you want to burn your own body fat you need to minimise the alcohol, protein and carbohydrate which will burn first.  To me this is another angle on the idea that insulin levels are the signal that stops our body from using our own body fat in times of plenty.   And if we want to access our own body fat we need to reduce the insulin load of our diet to the point we can release our own body fat.

insulin load versus nutrient density

The risk however with the insulin load concept is that people can take things to extremes.  If our only objective is to minimise insulin load we’ll end up just eating bacon, lard, MCT, olive oil… and not much else.

image05

In his “Perfect Health Diet” book Paul Jaminet talks about “nutrient hunger”, meaning that we are more likely to have an increased appetite if we are missing out on a particular nutrients.  He says

“A nourishing, balanced diet that provides all the nutrients in the right proportions is the key to eliminating hunger and minimising appetite.“

In the chart below shows nutrient density versus proportion of insulinogenic calories.  The first thing to note is that there is a lot of scatter!  However, on the right-hand side of the chart there are high carb soft drinks, breakfast cereals and processed grains that are nutrient poor.  But if we plot a trendline we see that nutrient density peaks somewhere around 40% insulinogenic calories.

image14

If you are metabolically challenged, you will want to reduce the insulin load of your diet to normalise blood glucose levels.  But if you reduce your insulin load too much you end up living on purified fats that aren’t necessarily nutrient dense.

If we are trying to avoid both carbohydrates and protein we end up limiting our food choices to macadamia nuts, pine nuts and a bunch of isolated fats that aren’t found in nature in that form.  Rather than living on copious amounts of refined oils I think we’re in much safer territory if we maximise nutrient density with whole foods while still maintaining optimal blood glucose levels.

The chart below shows the proportion of insulinogenic calories for the highest-ranking basket of foods (i.e. top 10% of the foods in the USDA foods database) for a range of approaches, from the low insulin therapeutic ketosis, through to the weight loss foods for someone who is insulin sensitive and a lot of fat is coming from their body.  At one end of the scale a therapeutic ketogenic may only contain 14% insulinogenic calories while a more nutrient dense approach might have more than half of the food requires insulin to metabolise.

image11

macronutrient splits

It’s one thing to set theoretical macronutrient targets, but real foods don’t come in neat little packages of protein, fat and carbohydrates.  The chart below shows the macronutrient split of the most nutrient dense 10% of foods for each of the four nutritional approaches.  The protein level for the weight loss approach might seem high but then once we factor in an energy deficit from our body fat it comes back down.

image06

In reality you’re probably not going to be able to achieve weight maintenance if you just stick to the nutrient dense weight loss foods.  You’ll either become full and will end up using your stored body fat to meet the energy deficit or you will reach for some more energy dense foods to make up the calorie deficit.  If you look at the macronutrient split of the most nutrient dense meals for the different approach you find they are lower in protein and higher in fat as shown in the chart below.

2016-12-03-3

nutrient density

The chart below shows the percentage of the daily recommended intake of essential vitamins, minerals, amino acids and fatty acids you can get from 2000 calories for each of the approaches.

image04

You can meet most of your nutritional requirements with a therapeutic ketogenic diet, however you’ll have to eat enough calories to maintain your weight to prevent nutritional deficiencies.

As you progress to the more nutrient dense approaches you can meet your nutrient requirements with less energy intake.   The beauty of limiting yourself to nutrient dense whole foods is that you can obtain the required nutrition with less energy and you’ll likely be too full to overeat.

As far as I can see the holy grail of nutrition,  health and longevity is adequate energy without malnutrition.

If we look in more detail we can see that the weight loss (blue) and nutrient dense approaches (green) provide more of the essential micronutrients across the board, not just amino acids.

image02

While the protein levels in the “weight loss” and “most nutrient dense” approaches are quite high, keep in mind that the food ranking system only prioritises the nutrients that are harder to obtain.

The table below shows the various nutrients that are switched on in the food ranking system for each approach.

image07

This table shows the number of vitamins, minerals, amino acids and fatty acids counted for each approach.

image00

In the weight loss and nutrient dense approach, of the twelve essential amino acids, only Tyrosine and Phenylalanine has been counted in the density ranking system.

It just so happens that protein levels are high in whole foods that contain essential vitamins, minerals and fatty acids. 

It appears that if you set out to actively avoid protein it may be harder to get other essential nutrients.  The risk here is that you may be setting yourself up for nutrient hunger, and rebound/stall inducing cravings in the long term as your body becomes depleted of the harder to obtain nutrients.

choosing the right approach for you

I believe one of the key factors in determining which nutritional approach is right for you is your blood glucose levels which gives you an insight into your insulin levels and insulin sensitivity.

As shown in the chart below, if your blood glucose levels are high then it’s likely your insulin levels are also high which means you will not be able to easily to access your fat stores.  I have also created this survey which may help you identify whether you are insulin resistant and which foods might be ideal for you right now.

image19

While you may need to start out with a higher fat approach, as your glucose levels decrease and ketone levels rise a little you will be able to transition to more nutrient dense foods.

The table below shows the relationship between HbA1c, glucose, ketones and GKI.   Once you are getting good blood glucose levels you can start to focus more on nutrient density and weight loss.

 Risk level HbA1c average blood glucose ketones GKI
 (%)  (mmol/L)  (mg/dL)  (mmol/L)
low normal 4.1 4.0 70 5.5 0.7
optimal 4.5 4.6 83 2.5 1.8
excellent < 5.0 < 5.3 < 95 > 0.2 < 30
good < 5.4 < 6.0 < 108 < 0.2
danger > 6.5 7.8 > 140 < 0.2

more numbers

The table below shows what the different nutritional approaches look like in terms of:

  • ketogenic ratio
  • ratio of fat to protein
  • protein (g)/kg LBM
  • insulin load (g/kg LBM)
approach keto ratio fat : protein protein g/LBM insulin load (g/LBM)
therapeutic ketosis 1.8 2.2 1.0 0.9
diabetes 0.9 1.0 1.8 1.5
weight loss (incl. body fat) 0.5 0.6 2.5 2.4
nutrient dense 0.3 0.3 3.0 2.8

The 1.0g/kg LBM for therapeutic ketosis is greater than the RDA minimum of 0.8g/kg LBM so will still provide the minimum amount while still being ketogenic.  It’s hard to find a lot of foods that have less than 1.0g/kg LBM protein in weight maintenance without focussing on processed fats.

At the other extreme most nutrient dense foods are very high in protein but this might also be self-limiting meaning that people won’t be able to eat that much food.  As mentioned earlier, it will be hard to eat enough of the nutrient dense foods to maintain your current weight.  Either you will end up losing weight because you can’t fit as much of these foods in or reaching more energy dense lower nutrient density foods.  Also, if you found you were not achieving great blood glucose levels and some low-level ketones with mean and non-starchy veggies you might want to retreat to a higher fat approach.

The table below lists optimal foods for different goals from most nutrient dense to most ketogenic.    Hopefully over time you should be able to work towards the more nutrient dense foods as your metabolism heals.

dietary approach printable .pdf
weight loss (insulin sensitive) download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
diabetes and nutritional ketosis download
therapeutic ketosis download

what about mTOR?

Many people are concerned about excess protein causing cancer or inhibiting mTOR (Mammalian Target of Rapamycin).[8]  [9]

From what I can see though, the story with mTOR is similar to insulin.  That is, constantly elevated insulin or constantly stimulated mTOR are problematic and cause excess growth without being interspersed with periods of breakdown and repair.

Our ancestors would have had times when insulin and mTOR were low during winter or between successful hunts.  But during summer (when fruits were plentiful) or after a successful hunt, insulin would be elevated and mTOR suppressed as they gorged on the nutrient dense bounty.

These days we’re more like the futuristic humans from Wall-E than our hunter gather ancestors.   We live in a temperature controlled environment with artificial lighting and tend to put food in our mouths from the moment we wake up to the time we fall asleep.[10]

image15

Rather than chronic monotony (e.g. eating five or six small meals per day every day), it seems that periods of growth (anabolism) and breakdown and cleaning (catabolism) are optimal to thrive in the long term.  We need periods of both.  One or the other chronically are bad news.

image00

As my wise friend Raymund Edwards from Optimal Ketogenic Living says

“FAST WELL, FEED WELL.” 

image21

how much protein?

Optimal protein levels are a contentious topic.  There is research out there that says that excess protein can be problematic from a longevity perspective.  Protein promotes growth, IGF-1, insulin and cell turnover which can theoretically compromise longevity.  At the same time, there are plenty of studies that indicate that we need much more protein than the minimum RDI levels.[11]

image09

In the end, you need to eat enough protein to prevent loss of lean muscle and maintain strength.  If you’re trying to build lean muscle and working out, then higher levels of protein may be helpful to support muscle growth.  If you are trying to lose weight, then higher levels of protein can be useful to increase satiety and prevent loss of lean muscle mass.  Maintaining muscle mass is critical to keeping your metabolic rate high and avoiding the reduction that can come with chronic restriction.[12] [13]

In addition to building our muscles, protein is critical for building our bones, heart, organs and providing many of the neurotransmitters required for mental health.  So protein from real whole foods is generally nothing to be afraid of.  It’s typically the processed high carb foods that make the detrimental impact on  insulin and blood glucose levels.

The table below shows a starting point for protein in grams depending on your height.  This assumes that someone with a lean body mass (LBM) of 80 kg is burning 2000 calories per day and your lean body mass equates to a BMI of 20 kg/m2.  LBM is current weight minus fat mass minus skeletal mass which again is hard to estimate without a DEXA.

There are a lot of assumptions here so you will need to take as a rule of thumb starting point and track your weight and blood glucose levels and refine accordingly.  It’s unlikely that you will get to the high protein levels of the most nutrient dense approach because either you would feel too full or your glucose levels may rise and ketones disappear, so most people, unless your name is Duane Johnson, will need to moderate back from that level.

image10

Example:  Let’s say for example you were 180cm and were managing diabetes and elevated blood glucose levels.  You would start with around 117g of protein per day as an initial target and test how that worked with your blood glucose levels.  If your blood glucose levels on average were less than say 5.6mmol/L or 100mg/dL and your ketones were above 0.2mmol/L you could consider increasing transitioning to more nutrient dense foods. 

If you want to see what this looks like in terms of real foods and real meal meals check out the optimal food list and the optimal meals for the different approaches.

insulin load

Using a similar approach, we can calculate the daily insulin load (in grams) depending on your height and goals.  The values in this table can be used as a rule of thumb for the insulin load of your diet.

If you are not achieving your blood glucose or weight loss goals, then you can consider winding the insulin load back down.  If you are achieving great blood glucose levels, then you might consider choosing more nutrient dense food which might involve more whole protein and more nutrient dense green leafy veggies.

image08

Example:  Let’s say for example you are a 180cm person with good glucose control but still wanting to lose weight, your initial target insulin load would be 156g from the superfoods from fat lost list.  If you were not losing weight at this level, you could look to wind it back a little until you started losing weight.  If you are consistently achieving blood glucose levels less than 5.6mmol/L or 100mg/dL and ketones greater than 0.2mmol/L you could consider transitioning to more nutrient dense foods. 

summary

In summary, reducing the insulin load of your diet is an important initial step.  However, as your blood glucose and insulin levels normalise there are a number of other steps that you can take towards optimising nutrient density on your journey towards optimal health and body fat.

  1. Reduce the insulin load of your diet (i.e. eliminate processed carbage and maybe consider moderating protein if still necessary) to normalise blood glucose levels and reduce insulin levels to facilitate access to stored body fat.
  2. If your blood glucose levels are less than say 5.6 mmol/L or 100mg/dL and your ketone levels are greater than say 0.2 mmol/L then you could consider transitioning to more nutrient dense foods.
  3. If further weight loss is required, maximise nutrient density and reduce added fats to continue weight loss.
  4. Consider also adding an intermittent fasting routine with periods of nutrient dense feasting. Modify the feasting/fasting cycles to make sure you are getting the results you are after over the long term.
  5. Once optimal/goal weight is achieved, enjoy nutrient dense fattier foods as long as optimal weight and blood glucose levels are maintained.
  6. If blood glucose levels are greater than optimal blood glucose levels, return to step 1.
  7. If current weight is greater goal weight return to step 3.

references

[1] http://diabesity.ejournals.ca/index.php/diabesity/article/view/19

[2] http://www.epilepsy.com/learn/treating-seizures-and-epilepsy/dietary-therapies/ketogenic-diet

[3] http://www.epilepsy.com/learn/treating-seizures-and-epilepsy/dietary-therapies/ketogenic-diet

[4] http://www.health.harvard.edu/blog/how-much-protein-do-you-need-every-day-201506188096

[5] https://intensivedietarymanagement.com/how-much-protein-is-excessive/

[6] https://en.wikipedia.org/wiki/Protein_poisoning

[7] https://optimisingnutrition.com/2015/08/31/optimal-protein-intake/

[8] https://www.youtube.com/watch?v=Yv-M-5-s9B0

[9] http://nutritionfacts.org/video/prevent-cancer-from-going-on-tor/

[10] https://www.youtube.com/watch?v=qPpAvvPG0nc

[11] https://www.ncbi.nlm.nih.gov/pubmed/27109436

[12] http://ajcn.nutrition.org/content/87/5/1558S.long

[13] https://en.wikipedia.org/wiki/Protein-sparing_modified_fast

nutrient dense autoimmune friendly foods

An “autoimmune disease” develops when your immune system, which defends your body against disease, decides your own healthy cells are foreign.  As a result, your immune system attacks healthy body cells.[1]

The list of diseases that are said to be autoimmune related are extensive,[2] [3] and to add insult to injury, people with autoimmune issues often end up with challenging digestive issues.

An autoimmune dietary protocol eliminates foods that can trigger inflammation in people with more sensitive digestion that may be autoimmune related.  The foods typically eliminated include nuts, seeds, beans, grains, artificial sweeteners, dairy, alcohol, chocolate and nightshades.

The remaining foods largely involve vegetables, seafood and animal products.  Given that Type 1 Diabetes is an autoimmune condition I have also created a lower insulin load diabetes friendly autoimmune list of foods that that will be more gentle on blood glucose levels.

Although sticking to the autoimmune friendly list of foods is somewhat restrictive it is a very nutrient dense approach compared to other options as you can see in the comparison of the nutrient density of different nutritional approaches in the chart below where it came in at #2 of the thirteen approaches analsed.

image01

The chart below shows the quantity of nutrients provided by these nutrient dense autoimmune friendly foods compared to the average of all the 8000 foods in the USDA database.

autoimmune-nutrient-dense

This chart shows the amount of nutrients provided by the diabetes friendly autoimmune protocol foods compared to all the foods in the USDA database which are not as high but still better than the average of all the foods available.

autoimmune-dabietes-friendly

An autoimmune protocol is typically a short term ‘reset’ where inflammatory foods are eliminated for a period.  Once things settle down potential other possible trigger foods are slowly reintroduced to see which foods can be tolerated.

For more information see Robb Woolf’s The Paleo Solution, Sarah Ballantyne’s The Paleo Approach or Chris Kresser The Paleo Cure.

The foods listed below represent the top 10% of the USDA food database using this ranking system.  Also included in the table are the nutrient density score, percentage of insulinogenic calories, insulin load, energy density and the multicriteria analysis score (MCA) that combines all these factors.

autoimmune protocol (nutrient dense)

vegetables, spices and fruit 

image19

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
broccoli 23 36% 3 22 2.61
spinach 21 49% 4 23 2.20
zucchini 19 40% 2 17 2.15
watercress 24 65% 2 11 2.15
endive 15 23% 1 17 2.11
chicory greens 14 23% 2 23 2.03
basil 18 47% 3 23 1.91
beet greens 15 35% 2 22 1.86
asparagus 18 50% 3 22 1.85
escarole 11 24% 1 19 1.71
Chinese cabbage 17 54% 2 12 1.70
chard 15 51% 3 19 1.63
parsley 15 48% 5 36 1.63
lettuce 15 50% 2 15 1.60
cauliflower 15 50% 4 25 1.57
alfalfa 9 19% 1 23 1.57
okra 14 50% 3 22 1.49
summer squash 13 45% 2 19 1.47
chives 13 48% 4 30 1.41
portabella mushrooms 14 55% 5 29 1.40
arugula 11 45% 3 25 1.32
turnip greens 11 44% 4 29 1.32
cloves 9 35% 35 274 1.30
sage 7 26% 26 315 1.26
brown mushrooms 16 73% 5 22 1.25
collards 8 37% 4 33 1.18
white mushroom 13 65% 5 22 1.17
celery 10 50% 3 18 1.16
dandelion greens 11 54% 7 45 1.15
sauerkraut 8 39% 2 19 1.15
curry powder 3 13% 14 325 1.15
shiitake mushroom 11 58% 7 39 1.12
yeast extract spread 11 59% 27 185 1.11
cucumber 7 39% 1 12 1.09
seaweed (wakame) 14 79% 11 45 1.01
edamame 6 41% 13 121 0.98
radishes 7 43% 2 16 0.98
spirulina 11 70% 6 26 0.92
avocado -1 8% 3 160 0.92
cabbage 8 55% 4 23 0.85
Brussel sprouts 7 50% 6 42 0.85
thyme 4 34% 31 276 0.84
chayote 5 40% 3 24 0.81
marjoram 3 31% 27 271 0.81

seafood

image21

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
salmon 19 52% 20 156 1.96
fish roe 18 47% 18 143 1.93
trout 16 45% 18 168 1.80
caviar 13 33% 23 264 1.76
anchovy 14 44% 22 210 1.64
oyster 16 59% 14 102 1.57
mackerel 7 14% 10 305 1.53
sturgeon 13 49% 16 135 1.44
cisco 9 29% 13 177 1.43
crab 17 71% 14 83 1.42
halibut 15 66% 17 111 1.29
herring 9 36% 19 217 1.28
flounder 13 57% 12 86 1.28
tuna 11 52% 23 184 1.22
lobster 14 71% 15 89 1.19
shrimp 14 69% 19 119 1.18
rockfish 13 66% 17 109 1.14
pollock 13 69% 18 111 1.09
cod 13 71% 48 290 1.05
crayfish 12 67% 13 82 1.04
perch 10 62% 14 96 0.92
haddock 11 71% 19 116 0.87
whiting 10 66% 18 116 0.85
white fish 10 70% 18 108 0.81

animal products

image09

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
lamb liver 19 48% 20 168 1.99
lamb kidney 19 52% 15 112 1.91
turkey liver 15 47% 21 189 1.70
veal liver 17 55% 26 192 1.69
beef liver 17 59% 25 175 1.61
chicken liver 14 50% 20 172 1.51
beef kidney 14 52% 20 157 1.47
beef brains 7 22% 8 151 1.40
ham 13 59% 17 113 1.22
lamb brains 6 27% 10 154 1.16
lamb heart 9 48% 19 161 1.13
chicken liver pate 7 34% 17 201 1.12
ground turkey 6 30% 19 258 1.12
turkey heart 9 47% 20 174 1.08
rib eye steak 7 41% 21 210 1.07
pork liver 11 59% 23 165 1.05
lean beef 11 61% 23 149 1.05
lamb chop 7 42% 25 234 1.04
roast beef 6 38% 21 219 1.04
roast pork 7 41% 20 199 1.03
beef heart 9 52% 23 179 1.02
salami 2 18% 17 378 1.02
beef rib eye 6 39% 21 215 1.01
chicken 10 60% 22 148 0.98
veal 11 65% 24 151 0.95
turkey meat 8 52% 21 158 0.94
turkey drumstick 8 52% 21 158 0.94
beef tongue 1 16% 11 284 0.93
pork chop 9 57% 23 172 0.93
T-bone steak 3 26% 19 294 0.92
ground pork 8 54% 25 185 0.92
pepperoni 0 13% 16 504 0.92
lamb sweetbread 6 43% 15 144 0.90
pork shoulder 8 56% 22 162 0.88

autoimmune protocol (diabetes friendly)

Vegetables, spices and fruit

image19

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
broccoli 25 36% 3 22 1.78
endive 16 23% 1 17 1.65
chicory greens 14 23% 2 23 1.59
alfalfa 11 19% 1 23 1.54
escarole 11 24% 1 19 1.41
spinach 24 49% 4 23 1.40
zucchini 19 40% 2 17 1.38
beet greens 15 35% 2 22 1.33
curry powder 3 13% 14 325 1.27
asparagus 21 50% 3 22 1.22
basil 19 47% 3 23 1.21
avocado -2 8% 3 160 1.18
watercress 28 65% 2 11 1.17
olives -6 3% 1 145 1.12
turnip greens 14 44% 4 29 1.03
parsley 15 48% 5 36 1.02
sage 5 26% 26 315 1.02
chard 17 51% 3 19 1.01
Chinese cabbage 18 54% 2 12 1.00
lettuce 16 50% 2 15 0.98
portabella mushrooms 18 55% 5 29 0.96
cauliflower 15 50% 4 25 0.95
cloves 8 35% 35 274 0.93
collards 8 37% 4 33 0.93
summer squash 12 45% 2 19 0.92
chives 13 48% 4 30 0.91
okra 14 50% 3 22 0.89
poppy seeds -3 17% 23 525 0.86
sauerkraut 7 39% 2 19 0.85

seafood

image21

food ND % insulinogenic insulin load (g/100g) calories/100g MCA score
mackerel 7 14% 10 305 1.44
fish roe 23 47% 18 143 1.41
caviar 16 33% 23 264 1.40
salmon 24 52% 20 156 1.33
trout 20 45% 18 168 1.29
anchovy 19 44% 22 210 1.27
cisco 11 29% 13 177 1.25
herring 12 36% 19 217 1.14
sardine 12 37% 19 208 1.1
sturgeon 17 49% 16 135 1.04
oyster 20 59% 14 102 0.94
flounder 19 57% 12 86 0.94
tuna 16 52% 23 184 0.93
halibut 21 66% 17 111 0.79
crab 23 71% 14 83 0.77
rockfish 19 66% 17 109 0.72
shrimp 20 69% 19 119 0.69
perch 16 62% 14 96 0.67
lobster 20 71% 15 89 0.66
crayfish 18 67% 13 82 0.66
pollock 19 69% 18 111 0.64
cod 19 71% 48 290 0.57

animal products

image09

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
lamb kidney 25 52% 15 112 1.33
lamb liver 22 48% 20 168 1.32
beef brains 6 22% 8 151 1.24
turkey liver 19 47% 21 189 1.21
lamb brains 7 27% 10 154 1.15
chicken liver 20 50% 20 172 1.15
salami 3 18% 17 378 1.13
pepperoni -0 13% 16 504 1.11
bratwurst 1 16% 13 333 1.08
beef kidney 19 52% 20 157 1.08
ground turkey 8 30% 19 258 1.08
bacon -2 11% 11 417 1.07
veal liver 21 55% 26 192 1.06
pork ribs 1 18% 16 361 1.05
sweetbread -3 12% 9 318 1.04
chicken liver pate 9 34% 17 201 1.04
beef tongue -1 16% 11 284 1.04
kielbasa -1 15% 12 325 1.03
T-bone steak 4 26% 19 294 1.01
beef liver 22 59% 25 175 1.00
pork sausage 1 20% 16 325 1.00
park sausage 3 25% 13 217 1.00
roast beef 10 38% 21 219 0.99
liver sausage -3 13% 10 331 0.99
rib eye steak 11 41% 21 210 0.99
roast pork 11 41% 20 199 0.96
beef rib eye 10 39% 21 215 0.95
beef sausage -1 18% 15 332 0.94
turkey 0 20% 21 414 0.94
turkey bacon -1 19% 11 226 0.92
meatballs -2 19% 14 286 0.91
lamb heart 13 48% 19 161 0.91
knackwurst -4 16% 12 307 0.90
turkey heart 13 47% 20 174 0.89
liver pate -3 16% 13 319 0.89
chorizo -3 17% 19 455 0.87
lamb rib -2 19% 17 361 0.86
lamb chop 10 42% 25 234 0.86
ham 18 59% 17 113 0.85
duck -3 18% 15 337 0.85
blood sausage -5 14% 13 379 0.84

other dietary approaches

The table below contains links to separate blog posts and printable .pdfs for a range of dietary approaches (sorted from most to least nutrient dense) that may be of interest depending on your situation and goals.   You can print them out to stick to your fridge or take on your next shopping expedition for some inspiration.

dietary approach printable .pdf
weight loss (insulin sensitive) download
autoimmune (nutrient dense) download
alkaline foods download
nutrient dense bulking download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
autoimmune (diabetes friendly) download
zero carb download
diabetes and nutritional ketosis download
vegan (nutrient dense) download
vegan (diabetic friendly) download
therapeutic ketosis download
avoid download

If you’re not sure which approach is right for you and whether you are insulin resistant, this survey may help identify the optimal dietary approach for you.

image02

references

[1] http://www.healthline.com/health/autoimmune-disorders

[2] https://en.wikipedia.org/wiki/Autoimmune_disease

[3] https://www.aarda.org/disease-list/

choosing the right sized low carb band aid

  • This article identifies nutrient dense low insulin load foods that can help to stabilise your blood glucose levels and allow your own pancreas to keep up.
  • Once you normalise your blood glucose and lose some weight the progressive addition of nutrient dense low energy density foods may help continue your weight loss and improve your metabolic health.

how important is insulin sensitivity?

Managing your blood glucose levels through diet seems to be a major issue, if not THE most significant issue when it comes to health, longevity and reducing your risk of the leading causes of death (i.e. heart attack, stroke, cancer, Alzheimer’s and Parkinson’s Disease).[1]

As indicated by the charts below the lowest risk of the diseases associated with metabolic disease occurs when your HbA1c is less than 5% (i.e. an average blood glucose levels less than 100 mg/dL or 5.4 mmol/L).[2]

image10

image12

image11

image13

Insulin is an anabolic hormone that helps store nutrients and prevent their breakdown.   High levels of insulin (hyperinsulinemia) can lead to excess fat storage.  Excess insulin can also prevents us from accessing stored body fat.

image15

is low carb the best approach for everyone?

There are people who will argue that you can eat as much fat as you want.

At the same time there are people who will argue that you can eat as much protein as you want.

And you guessed it, there are also people who argue that you can eat as much carbohydrate as you want.

So who is right?

It seems that Christopher Gardner’s recent study Weight loss on low-fat vs. low-carbohydrate diets by insulin resistance status among overweight adults and adults with obesity: A randomized pilot trial[3] might bring some clarity to the macro nutrient wars.[4]

image17

As always, context matters.

It seems that there is no one single approach that is optimal for everyone all the time.

As well as encouraging participants to eat nutrient dense whole foods, Gardener’s study divided the participants up based on their insulin sensitivity and asked them to restrict carbohydrates or restrict fat as much as they could over a period of six months living in the real world without tracking calories.

As you can see from the chart below:

image14

This observation from Gardener’s study also aligns with the findings of the results of a 2005 study Insulin Sensitivity Determines the Effectiveness of Dietary Macronutrient Composition on Weight Loss in Obese Women (Cornier et al, 2005)[5] which also found that people who were insulin resistant did better with LCHF while those who were insulin sensitive did better on the HCLF approach.

image16

Similarly, people who are insulin resistant improve their fatty liver on a low GI diet.[6]

image08

Again, the results from Pitas (2005) show that people who are insulin sensitive lose more weight on a high glycemic diet while the people who were insulin resistant lose more on the low glycemic load diet.

image04

In this video David Ludwig explains why someone who is insulin resistant might do better with a reduced carbohydrate approach.

am I insulin resistant?

So the obvious question then is whether or not you are insulin resistant and how do you tell?

Insulin resistance, and the compensatory hyperinsulinemia that follows, appear to be caused primarily by excess body fat, particularly around the abdomen and organs, which leads to inflammation, insulin resistance and elevated blood glucose levels.[7]

image18

So if you have big belly there’s a pretty good chance you are also insulin resistant and have elevated blood glucose and / or high insulin levels.  So having a waist circumference greater than half your height is a good indication you are insulin resistant.[8]  [9] [10]

image07

Unfortunately your size is not a perfect indicator of your metabolic health.  Some people manage to store more fat before inflammation and insulin resistance sets in.[11]  These people are called metabolically healthy obese.[12]    Conversely some people can look thin on the outside but still have fat around their organs which causes insulin resistance.  These people are called TOFIs (thin outside, fat inside).[13]

A more accurate way to ascertain if you are insulin resistant is to test your blood glucose levels. If your blood glucose levels are consistently above 5.0mmol/L or 90 mg/dL before meals then you might have a problem.  If you wanted to get more serious you could get a fasting insulin test, a HOMA-IR test, test your glucose : ketone ratio or get an oral glucose tolerance test.

If you have elevated blood glucose and insulin levels you probably need to eat less processed carbohydrates.  If you are obese but have great blood glucose levels then it’s probably time to incorporate some more lower energy density higher nutrient density foods to help you reduce your calorie intake.

nutrient dense low carb foods for blood glucose control

For most people, the nutrient dense foods shown in the ‘building a better nutrient density’ article would be a major improvement.

People who are insulin sensitive but still want to lose weight would do well with low calorie density high nutrient density foods.

However, for someone who is insulin resistant, the most nutrient dense foods, which have about 50% insulinogenic calories, may lead to unacceptable blood glucose swings.   People who are unable to produce enough insulin or are insulin resistant need to manage their insulin budget and make sure that the insulinogenic foods that they do eat maximise nutrient density in order to provide adequate amino acids for muscle growth and repair and sufficient vitamins and minerals.

Where this gets more interesting is when we combine nutrient density with the proportion of insulinogenic calories to optimise both glucose levels and nutrient density.   Listed below is a summary of the top 1000 foods of the 7000+ foods in the USDA database when we prioritise by both nutrient density and insulin load.

Included in the tables below are a number of parameters that may be useful:

  1. The nutrient density score is based on the number of standard deviations above the average that a particular food is from the average.
  2. The percentage of insulinogenic calories is the proportion of the energy in the food that can turn to glucose and require insulin.
  3. The net carbs per 100g is the amount of digestible non-fibre carbohydrates in the food that can raise your blood glucose levels.
  4. The insulin load is the weight of food per 100g that will require insulin to metabolise.
  5. The energy density is the number of calories per 100g of the food. If you’re watching your weight as well as your blood glucose numbers than keeping the energy density down will also be of interest.

Vegetables

Listed below are the highest ranking vegetables.

While many of these vegetables have a high proportion of insulinogenic calories (i.e. digestible non-fibre carbohydrates that can raise blood glucose levels) they are also highly nutritious and have very low levels of non-carbohydrates and energy per 100g.  Most people would have to eat a lot of these to have a significant impact on blood glucose levels.

Most of us would do well to focus on filling up on any of these vegetables to help keep overall calories down to assist with weight loss which is critical for improving insulin resistance.  If you typically avoid vegetables due to blood glucose concerns then you could start out slowly  and progressively increase your intake of these vegetables while keeping an eye on your blood glucose levels.

image06

food ND % insulinogenic net carbs/100g insulin load (g/100g) calories/100g
celery 2.63 49% 1 2 17
turnip greens 1.31 39% 1 4 37
rhubarb 1.46 57% 3 3 21
lettuce 1.34 52% 2 2 17
broccoli 1.21 57% 4 6 42
asparagus 1.12 46% 2 3 27
winter squash 1.22 80% 7 8 39
artichokes 0.83 33% 3 4 54
Chinese cabbage 1.02 60% 1 2 16
okra 0.94 57% 4 5 37
summer squash 1.00 65% 2 3 19
bamboo shoots 0.90 52% 3 4 28
seaweed (kelp) 0.74 43% 4 5 50
bell peppers 0.86 64% 6 7 43
cabbage 0.81 53% 3 4 30
snap green beans 0.74 47% 4 5 40
radishes 0.70 50% 2 2 19
peas 0.69 58% 5 7 51
kale 0.75 74% 8 10 56
dill 0.42 30% 2 4 52
thyme 0.27 21% 14 19 359
mushrooms 0.65 70% 2 5 30
jalapeno peppers 0.52 54% 4 5 35
collards 0.44 46% 2 5 40
paprika 0.19 17% 8 16 389
black pepper 0.24 36% 24 29 327
beets 0.34 44% 4 5 48
chives 0.27 34% 1 3 37
bay leaf 0.21 37% 34 38 406
mung beans 0.33 46% 1 3 26
onions 0.52 77% 7 8 41
mustard greens 0.27 45% 2 3 30

 

fruit

This list of diabetic friendly fruits is quite short compared to the veggies.

image21

food ND % insulinogenic net carbs/100g insulin load (g/100g) calories/100g
olives 0.02 15% 3 3 90
avocado 0.01 18% 5 6 131
raspberries 0.09 42% 6 6 58

nuts, seeds and legumes

The great thing about nuts and seeds is that they have a low percentage of insulinogenic calories and are often low in non-fibre carbohydrates.   The drawback is that they have a much higher energy density due to their higher fat content and are not as high in nutrients as the non-starchy green veggies.  Keep in mind that you can overdo the nuts if you are keeping an eye on your weight as well as your blood glucose levels.

image05

food ND % insulinogenic net carbs/100g insulin load (g/100g) calories/100g
pecans 0.15 5% 4 9 762
pine nuts 0.16 11% 9 18 647
tahini 0.17 16% 13 26 633
peanuts 0.17 18% 7 28 605
sunflower seeds 0.18 20% 11 24 491
macadamia nuts 0.12 5% 5 9 769
hummus 0.26 32% 8 14 175
pistachio nuts 0.16 23% 19 34 602
sesame seeds 0.12 18% 14 27 603
almonds 0.11 16% 15 27 652
brazil nuts 0.09 9% 4 15 704
chia seeds 0.10 16% 8 21 511
tofu 0.17 28% 2 8 112
walnuts 0.10 15% 7 25 683
coconut meat 0.09 11% 16 20 703
hazelnuts 0.10 16% 15 27 692
cashew nuts 0.11 22% 24 33 609
flaxseed 0.08 12% 2 16 568

dairy and eggs

Eggs and cheese are great in terms of proportion of insulinogenic calories.   The nutrient density of these foods is above average but not as high as the non-starchy vegetables.  As with the nuts, keep in mind that the energy density of these foods is high so it is possible to overdo them if you are keeping an eye on your weight as well as your blood glucose levels.

dairy20and20eggs

food ND % insulinogenic insulin load  (g/100g) calories/100g
butter 0.11 0% 1 734
cream cheese 0.15 10% 8 348
goat cheese 0.18 22% 25 451
egg yolk 0.18 19% 15 317
Gruyère cheese 0.18 21% 22 412
sour cream 0.12 9% 4 197
Limburger cheese 0.17 18% 15 327
cream 0.10 5% 5 431
Edam cheese 0.18 22% 20 356
blue cheese 0.17 20% 18 354
Gouda cheese 0.18 23% 20 356
cheddar cheese 0.16 20% 20 403
Muenster cheese 0.16 20% 18 368
Camembert cheese 0.17 20% 15 299
Monterey 0.16 20% 19 373
Colby 0.16 20% 20 394
feta cheese 0.17 22% 14 265
brie cheese 0.15 19% 16 334
provolone 0.17 24% 21 350
Swiss cheese 0.18 26% 25 379
parmesan cheese 0.19 30% 31 411
mozzarella 0.15 23% 18 318
whole egg 0.17 29% 10 138

seafood

Getting an adequate intake of omega 3 essential oils is important and it’s hard to do without eating fish. Higher protein lower fat fish such as cod will require more insulin to process though this is typically not an issue unless you have type 1 diabetes and need to calculate and time your insulin doses or have advanced type 2 where your insulin response is not well matched to your glucagon response from the protein.

seafood-salad-5616x3744-shrimp-scallop-greens-738

food ND % insulinogenic insulin load (g/100g) calories/100g
caviar 0.30 32% 22 276
anchovy 0.34 42% 21 203
herring 0.26 34% 18 210
sardine 0.24 36% 18 202
swordfish 0.28 41% 17 165
rainbow trout 0.28 43% 17 162
mackerel 0.28 45% 17 149
tuna 0.30 50% 17 137
sturgeon 0.26 47% 15 129
salmon 0.28 50% 15 122

animal products

Higher fat animal products will have a lower insulin response but but they also have a higher energy density.  All these foods have more nutrients than average but not as many as the non-starchy vegetables.

7450703_orig

food ND % insulinogenic insulin load (g/100g) calories/100g
chicken liver 0.43 48% 20 165
beef liver 0.46 58% 24 169
bacon 0.18 23% 30 522
pepperoni 0.13 14% 17 487
chorizo 0.15 17% 19 448
foie gras 0.11 11% 13 459
pate 0.13 16% 13 315
beef ribs 0.11 13% 12 349
duck (with skin) 0.12 17% 14 331
salami 0.12 18% 12 258
lamb 0.14 24% 18 308
beef steak 0.16 28% 21 305
frankfurter 0.10 14% 11 322
ground turkey 0.19 37% 19 203
chicken drumstick 0.17 36% 22 238

is low carb a band aid or cure?

Some people say that a reduced carbohydrate approach only addresses the symptom (high blood glucose) rather than the cause (insulin resistance).  However, the studies highlighted above suggest that the low carb “band aid” also helps with the healing process (e.g. fat loss).

If you are insulin resistant, then reducing the insulin load of your diet using the foods listed above to the point you achieve excellent blood glucose levels will most likely be helpful.

insulin load (g)=total carbohydrates (g)-fiber (g) + 0.56*protein (g)

As shown in the plots below, it’s the non-fibre carbohydrates, and to a lesser extent the protein, that drives our insulin and blood glucose response to food.

image03

image02

I’ve hit a plateau in my low carb diet, what now?

Let’s say you’re someone who has done well with a low carb diet.  You’ve heard the message not to fear fat, reduced your carbs and seen a near miraculous improvement in your blood glucose and insulin levels.  But, you haven’t quite reached your goal weight yet.

Listed below is a range of pieces of advice that you might hear given to people in this situation:

  1. Just eat more fat.
  2. Reduce total carbs.
  3. Focus more on nutrient dense low calorie density more satiating foods.
  4. Reduce net carbs.
  5. Reduce the insulin load of your diet.
  6. Eat more fibre.
  7. Exercise more.
  8. Lift heavy things to build lean muscle.
  9. Develop a fasting routine.
  10. Eat more plant based foods.
  11. Get more sunshine.
  12. Get less blue light at night.
  13. Eat only during daylight hours.
  14. Sleep more.
  15. Do some high intensity exercise.
  16. Cut out nuts and dairy.
  17. Track your calories and reduce them until you start losing weight.
  18. Stop stressing about your blood glucose levels so much, you’re just raising your cortisol!
  19. Get another hobby and stop navel gazing so much!

In the list above I’ve crossed out (a) and (b) which I think could be counter productive.

As suggested by the studies noted above, there may be a point as you achieve normal blood glucose levels that someone would benefit from focussing on higher nutrient density and lower energy density rather than just low carbs.

The million-dollar question is, what is the cut over point where you can move on from the LCHF blood glucose rehabilitation approach and start focusing on weight loss in order to further improve your metabolic health?

I think the point at which you deem yourself to have become metabolically flexible is when your average blood glucose levels are less than 100mg/dL or 5.4mmol/L.  At this point you will also be starting to show low level blood ketones.[14]  It is at this point you can start adding some of the nutrient dense low energy density foods to see what effect they have on your blood glucose levels.

When to start focussing on high nutrient density low energy density foods

The chart below (click to enlarge) shows a comparison of the nutrient density for the following dietary approaches:

  1. all foods,
  2. high nutrient density foods,
  3. nutrient dense low carbohydrate foods, and
  4. nutrient dense low calorie density foods.

image09

The low carbohydrate foods listed above will be more nutritious compared to the average of all of the foods available.  However, if you have normal blood glucose levels it might be a good idea to try to incorporate more nutrient dense low energy density foods that may be more filling and nutritious to help you to continue to progress on your weight loss journey.

If your appetite is influenced by obtaining adequate nutrients from your diet and / or energy density then it may be wise to reduce the carbs in your diet only as much as you need to normalise your blood glucose levels, otherwise you may risk compromising the nutrient density of your diet.

image19

The extent of the carbohydrate restriction (or the size of the band aid required) depends on the extent of the metabolic damage that you have sustained.  It may not be sensible to sign up for a full body cast (e.g. very high fat therapeutic ketogenic diet) if you only have a broken toe (e.g.  mild insulin resistance).

image20

As you start to heal your insulin resistance you may be able to progress from the higher fat diabetic friendly list of foods above to incorporate more more nutrient dense, lower energy density foods.

Then maybe in the long run, once you optimise your weight loss, you might be able to focus on the most nutrient dense foods for optimal health.

 

references

[1] https://optimisingnutrition.com/2016/03/21/wanna-live-forever/

[2] http://www.diabetes.co.uk/hba1c-to-blood-sugar-level-converter.html

[3] http://onlinelibrary.wiley.com/doi/10.1002/oby.21331/full

[4] The results of Gardner’s full study should be available in late 2016.

[5] http://onlinelibrary.wiley.com/doi/10.1038/oby.2005.79/epdf

[6] http://ajcn.nutrition.org/content/84/1/136.full.pdf+html

[7] http://www.ncbi.nlm.nih.gov/pubmed/25515001

[8] https://en.wikipedia.org/wiki/Waist-to-height_ratio

[9] https://www.google.com.au/search?q=obesity+code&spell=1&sa=X&ved=0ahUKEwjpg8b94P7LAhUCE5QKHS63AP4QvwUIGSgA&biw=1218&bih=939

[10] http://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-13-91

[12] https://en.wikipedia.org/wiki/Metabolically_healthy_obesity

[13] https://en.wikipedia.org/wiki/TOFI

[14] https://optimisingnutrition.com/2015/07/20/the-glucose-ketone-relationship/

insulin load… the greatest thing since carb counting?

In a few previous articles I have outlined the idea of the insulin load.[1] [2]  The concept is similar to carbohydrate counting, but also accounts for the effect of protein.

insulin load = total carbohydrates – fibre + 0.56 x protein

show me the data!

Most people understand that dietary carbohydrate is the primary nutrient that influences blood glucose and insulin.

image13

image11

However, while carbohydrate is the dominant nutrient that influences insulin and blood glucose response, indigestible fiber[3] and glucogenic amino acids (protein)[4] [5] also affect our blood glucose and our insulin response to food.  We can better predict the insulin and glucose response to our food if we also account for the effect of protein and indigestible carbohydrates (i.e. fibre).

image24

image22

I was pleased to see Jason Fung even mention the food insulin index and the Optimising Nutrition blog at the recent low carb conference in Vail Colorado.  And it has been great to see a handful of people like Patricia and Mike put this theory into practice with great results as detailed in this article.

Patricia Berry Moore

This comment from Patricia Berry Moore made my day.

Marty! Are you the low carb down under Marty??!

You and Sarah Hallberg are why I started LCHF.  And went from a very unhealthy type 2 diabetic at 156 lbs to a very healthy 113 lbs.

THANK YOU!

Patricia had seen my presentation on the food insulin index, applied the theory, and it worked!

Patricia says:

I use the insulin load concept. 

I find it helps me mess with my macros.  A little less protein a bit more carbs. 

And you can find that sweet spot.  For me 50g per day is perfect.

My doctor threatened me with insulin and so I started went digging and found your lectures. 

Over 10 months I lost 43 lbs (I’m 5’2″).  I was pre-diabetic for ten years and then type 2 diabetic for ten years. 

I am now off all my meds.  I was on eight different ones for high blood pressure, high cholesterol, arthritis, reflux, diabetes.

I’m never going back, so thank you!

This is Patricia’s “before photo.”  You can see a ‘puffiness’ in her face characteristic of insulin resistance and hyperinsulinemia, which causes fluid retention.  I showed this photo to my 12 year old daughter who said “that’s how you used to look.”  Thanks dear…  I think.

image17

If you’ve hit a plateau it might be worth tracking the insulin load of your food for a while to fine tune your diet.   Patricia says:

I use the app Lose it! which helps me track macros. So it’s pretty easy to keep a running total of my insulin load too. 

I started at around 80g per day.  As I decreased it, my blood sugars improved. 

At this point my fasting blood glucose run at 65 – 75 mg/dL with an insulin load around 50g per day or so. 

LCHF has really saved my life Marty.

This is Patricia now.  Congratulations Patricia!  You look like a different person!

image16

A little closer to home

As mentioned by my daughter, this is me before and after trying out my low insulin load, high nutrient density foods.  I don’t think my hair moved in the 18 months between when these work profile photos were taken, but some inflammation and weight certainly did.  My family assures me I was bigger and unhealthier looking than the photo on the left!

image07

The photo below on the left is my daughter’s “before photo” after spending 9 months in a high insulin environment.  Children born to mothers who are type 1 diabetic and dosing with lots of insulin tend to be delivered early via C-section due to their excessive size caused by the high levels of insulin from the mother.  The photo on the right is her twelve years later, all grown up and beautiful!

image15

The photos below are the same child, “JL,” who was one of the first type 1 diabetic children to receive insulin treatment in 1922.  Without insulin he’s wasting away, literally eating his own fat and muscle, unable to metabolize carbohydrate.  Two months later the photo on the right shows that he’s been able to make a full recovery with the exogenous insulin injection.

image06

Here’s other similar photos before and after receiving exogenous insulin.  

image03

Hopefully from these photos you can see how there’s a “Goldilocks zone” for insulin.  Not too little.  Not too much.  Just right.

Mike Alward

I received similar feedback recently from Mike Alward who has also successfully applied the insulin load theory.  Mike says:

I just wanted to say thanks for your work on insulin load, food insulin index and glucose : ketone index.  It really helped me to understand what was holding me back from reaching and being able to maintain a state of optimal ketosis. 

I manage my insulin load to ~75g per day.  My BG has come down and my ketones are now in the optimal range.  My GKI is now below 3. 

I used to be pre-diabetic with blood glucose up around 6.5 mmol/L.  Now, I am in the 4.5 – 4.7mmol/L range. 

Being in optimal ketosis has helped to control my appetite and cravings (especially sugar), which has made intermittent fasting so much easier.

Keep up this important work!  

image20

With this reduced insulin approach Mike is able to accommodate a solid amount of protein into his diet while maintaining excellent blood glucose and ketone levels.  Like anything, you can have too much of a good thing, including protein.  Many people find that as their insulin resistance improves they are able to handle a higher insulin load diet which may enable a higher nutrient density and less fat.    Mike says:

My target is ~90g – 100g of protein / day.  I am 6’0″.

Mike likes to track a range of different health makers.

I track my weight calories, macros, calculated insulin load, blood glucose, blood ketones and GKI.

Not everybody “geeks out” on this stuff.  I am totally into “nerd safaris” to research non-conventional wisdom health. 

I just got several folks to calculate their insulin load, and their heads almost exploded when I introduced them to GKI.  

You can see in the chart below how Mike’s ketones have increased as he has reduced the insulin load of his diet.

image18

The chart below shows how Mike’s glucose : ketone index (an approximation of insulin levels) has decreased as he lowered the insulin load of his diet.

image19

Tracking the insulin load of your diet is a little more complex than just counting carbs, but not that much more work if you’re already tracking your food intake.  Personally I’m not a big fan of tracking everything you eat but it can be useful to keep a food diary for a time to reflect and refine.   If you just want to know what you should eat these lists of optimal foods for different goals may be useful for you.

how to calculate your insulin load

So how do you calculate the insulin load of your diet?

If you’re already tracking your food intake it’s a pretty simple thing to do.  Below is an example output from MyFitnessPal[6] showing the food intake for the day comprising of:

  • carbohydrates (70g),
  • fiber (63g), and
  • protein (104g)

image09

So we start with the insulin load formula:

insulin load = carbohydrates (g– fibre (g) + 0.56 x protein (g)

Insert our values:

insulin load = 70g carbohydrates-63g fibre + 0.56 x 104g protein

and calculate:

insulin load = 65g

It’s not that much different to tracking net carbs, but instead you also account for protein which also requires insulin.  I initially developed this calculation for people with type 1 diabetes (like my wife) who need to calculate their insulin dosage but it can work in a similar way for someone wanting to reduce the demand on their pancreas to the point that it can keep up and maintain normal blood glucose levels.

Reducing your insulin levels to normal healthy levels will allow your stored fat to be used for energy and manage your appetite.   As you track your insulin load you can keep eliminating the foods that are driving it up until the point that you see the weight loss and blood glucose levels that you’re chasing.

image21

The appropriate insulin load will vary from person to person.  A small woman aiming for weight loss using a lower protein ketogenic approach might have an insulin load as low as 40g per day while a larger man looking who is active and looking build  muscle might have an insulin load as high as 300g per day.  A higher insulin load diet would allow more plant based foods, less fat and potentially a higher nutrient density (e.g. 40 to 50% of insulinogenic calories) however I think the first priority will be to reduce the insulin load of your diet to the point where you can normalise your blood glucose levels and reduced insulin (e.g. 20 to 30% of insulinogenic calories).

The best idea is to start tracking where you’re currently at and look to reduce your daily insulin load until you achieve excellent blood glucose levels (i.e. average less than 5.6 mmol/L or 100 mg/dL).  Once you normalise your blood glucose levels you could keep winding it down further until you achieve your desired level of ketones.  As your body heals and you start to reduce the amount of fat around your organs you may be able to tolerate a higher insulin load diet in time.

a little more on the insulin load theory

So is it all about the insulin load?  What about calories and conservation of energy?

This video gives a good overview of how insulin (either injected or from our own pancreas) affects  whether we store fat on our body or release it to be used for fuel.

Most people think of macro nutrients in terms of carbohydrates, protein and fat as per the the picture below.   They think that if we eat too much fat it will be stored as body fat.  But the reality is a little bit more complex than that.

image04

In the chart below the grey slices of the pie chart (i.e. the non-fibre carbohydrate and the glucogenic protein) are the components of your food that are glucogenic and will require insulin to metabolise.

The blue components are ketogenic (i.e. the dietary fat and the ketogenic protein) and do not require insulin to metabolise.  If you’re lucky enough to be insulin sensitive you will burn the food you eat and your appetite will be well regulated with minimal change in body weight.

image05

Indigestible fibre (black slice) doesn’t really have any effect on insulin or even contribute to calories for us but rather is used to feed the bacteria in our gut.  Fibre is a true ‘free food’.

If the insulin load of our diet is high then we are more likely to store a portion of the food.  If we are insulin resistant our body will have to generate more insulin to deal with the non fibre carbohydrate and glucogenic protein while  increasing our chances that some of the food we eat will be stored on our body.  We will then feel hungry and need to keep eating to obtain adequate energy.  Calories still matter, but outside a controlled metabolic laboratory, body fat accumulation is more about managing fat storage and appetite than about counting calories.  

image08

Calories still matter, but outside a controlled metabolic laboratory, body fat accumulation is more about managing fat storage and appetite than consciously counting calories.  Many people refer to insulin as the thermostat that controls our metabolism and how much fat we store.

The good news here is that we can use our understanding of the storage properties of insulin to our advantage.  If we are able to decrease the insulin load of our diet we are less likely to store fat and more likely to be able to use some of our stored body fat for energy.  This will mean that we feel less compelled to eat because we are able to use up our own body fat rather than constantly eating.   This reduced dietary insulin load scenario will lead to lower insulin levels, less storage, more use of body fat for fuel, a decreased appetite and a reduction in energy intake.  

image10

What can you do to reduce the insulin load of diet include?

  1. eat more fibre,
  2. eat less digestible carbohydrates, and
  3. make sure your protein intake is not excessive.

can you eat too much fat?

Can you still eat too fat much while keeping the insulin load of your diet low?  The short answer is yes, especially if you’re chasing a certain macro nutrient value or high ketone values.

The good news is that a higher fat low insulin diet will typically lead to increased satiety and reduced energy intake.

The bad news is that excess energy, whatever the source, will lead to fat gain, inflammation and insulin resistance.

Many people recommend that you should eat ‘fat to satiety’.  Unfortunately, high fat foods can be easy to overeat, at least for some individuals. There is no need to force yourself to eat extra fat if you are trying to lose weight.  If you’re trying to lose weight there’s no need to go out of your way to add extra fat and oils to your food but rather obtain your fat from whole-food sources.

The other unfortunate fact is that the insulin produced in response to food is less than half of the amount of insulin that your body produces.  In addition to reducing the insulin load of your diet you may also need to increase the periods between your meals.  This will allow your insulin levels to decrease even more so that body fat can be accessed for fuel.

Implementing an intermittent fasting regimen can be useful for people who find that reducing the dietary insulin load doesn’t lead to enough reduction in appetite.

As detailed in the how to use your glucose metre as a fuel gauge article, waiting until your blood glucose levels drop can be a useful way to increase the timing between meals and to understand whether your hunger is real.

You can get a substantial decrease in insulin levels with a regular 18 to 24 hour fast.image23.png

summary

  • The end game is to reduce the insulin load of your diet to the point that your pancreas can keep up and maintain normal blood glucose levels consistent with your personal metabolic health and level of insulin sensitivity.
  • If your blood glucose and insulin level are high then you should work to decrease the insulin load of your diet.
  • As the insulin load of your diet decreases you should see your blood glucose levels come down as well, your appetite reduce and your ketone levels come up.
  • If you’re still not seeing the results you want then the next step is to try intermittent fasting to further reduce your insulin and blood glucose as well as mitigate your overall food take.

 

references

[1] https://optimisingnutrition.com/2015/03/23/most-ketogenic-diet-foods/

[2] https://optimisingnutrition.com/2015/03/22/ketosis-the-cure-for-diabetes/

[3] https://en.wikipedia.org/wiki/Dietary_fiber

[4] https://optimisingnutrition.com/2015/07/06/insulin-index-v2/

[5] https://en.wikipedia.org/wiki/Glucogenic_amino_acid

[6] https://www.myfitnesspal.com/

 

proportion of insulinogenic calories

Someone looking to “go low carb” will typically try to make a decision on whether a food meets their goals simply based on the number of carbohydrates per serving or per 100g shown on the label.

This approach has limited benefit though, as the food may or may not contain a lot of water which makes it hard to compare in terms of carbohydrates per calorie.

Another way is to look at the amount of protein and fat in relation to the carbohydrates, but again this is a difficult calculation to make when you’re looking at the nutritional label in the shopping isle.

If we take the concept of “net carbs” and the idea that protein has some insulinogenic effect we can calculate the proportion of insulinogenic calories using the following formula:

image011

This calculation could be useful to determine whether one food is better than another if you’re trying to reduce your insulin load to the point that your pancreas can keep up.

As demonstrated by the chart below, the lower the proportion of insulinogenic calories in your food the less likely your meal is going to require large amounts of insulin, raise your blood glucose or cause you to store fat.

food insulin index table - correlation analysis 26052015 53725 AM.bmp

Sure, this is not a simple calculation we can quickly while we’re out shopping.  However using readily available nutritional data we can compare and rank a wide range of foods, making us better informed when we prepare our shopping list.

An extensive list of the foods with the lowest proportion of insulinogenic calories can be in this list of the most ketogenic diet foods.

Or we can combine it with other nutritional parameters to highlight ideal foods for weight loss, diabetes, therapeutic ketosis or athletic performance.

.

[next article…  application of insulin load for type 1 diabetics]

[this post is part of the insulin index series]

[Like what you’re reading?  Skip to the full story here.]

glycemic load versus insulin load

The aim of the glycemic index (GI) [1] [2] is to estimate the rise in blood sugar in response to the ingestion of various foods.

The theory goes that it is better to eat low glycemic index carbohydrates that will not raise our blood sugar too much and will take longer to digest. [3]

Building on GI is the concept of glycemic load which is the GI of a food multiplied by the grams of carbohydrate eaten.

Watermelon has a very high GI value, however because watermelon only contains a small quantity of carbohydrates (watermelon is mostly water) the overall glycemic load is small.

watermellon

A large glycemic load occurs when you eat a large quantity of a high glycemic index carbohydrate.

The limitation of the GI approach is that we can eat a diet full of low glycemic index carbohydrates and protein while still requiring a significant amount of insulin.

Even though they are slow to digest and do not raise blood sugar significantly, a low GI moderate GL diet will still require substantial amounts of insulin.

It’s the amount of insulin, not the grams of carbohydrates or even the rise in blood sugar that’s really at the nub of the problem.

AVPageView 23042015 33836 AM.bmp

The chart below shows the relationship between the glycemic load and insulin index from the testing undertaken in healthy people.  Reducing the glycemic load does not guarantee a low insulin response, particularly when it comes to high protein foods.

food insulin index table - correlation analysis 13052015 54118 AM.bmp

Even if you’re eating low GI foods that don’t spike your blood sugars you may still be generating a sustained requirement for insulin.

Maintaining reasonable blood sugars in spite of a moderate glycemic load is just an indication that your pancreas is still keeping up, for now.

Various studies have shown that eating a low GI diet doesn’t help with weight loss. [4] [5]  We also now know that high insulin levels are also a massive health risk as well as high blood sugars. [6]

Rather than focusing on the glycemic load or the glycemic index, I believe it is more important to manage the overall insulin load of the diet, particularly if your aim is to achieve optimal blood sugars or reduce excess body fat.

[next article…  are dairy and red meat uniquely insulinogenic?]

[this post is part of the insulin index series]

[Like what you’re reading?  Skip to the full story here.]

[1] http://www.glycemicindex.com/

[2] http://sydney.edu.au/science/people/jennie.brandmiller.php

[3] https://www.diabetesaustralia.com.au/Living-with-Diabetes/Eating-Well/Glycaemic-Index-GI/

[4] http://www.ncbi.nlm.nih.gov/pubmed/17823436

[5] http://chriskresser.com/is-the-glycemic-index-useful

[6] http://high-fat-nutrition.blogspot.com.au/2014/12/accord-and-musings-on-insulin.html

superfoods for diabetes & nutritional ketosis

More than carbohydrate counting or the glycemic index, the food insulin index data suggests that our blood glucose and insulin response to food is better predicted by net carbohydrates plus about half the protein we eat.

The chart below show the relationship between carbohydrates  and our insulin response. There is some relationship between carbohydrate and insulin, but it is not that strong, particularly when it comes to high protein foods (e.g. white fish, steak or cheese) or high fibre foods (e.g. All Bran).

food insulin index table - fructose analysis v2 21122015 44912 PM.bmp

Accounting for fibre and protein enables us to more accurately predict the amount of insulin that will be required for a particular food.  This knowledge can be  useful for someone with diabetes and / or a person who is insulin resistant to help them calculate their insulin dosage or to chose foods that will require less insulin.

image02

If your blood glucose levels are typically high you are likely insulin resistant (e.g.  type 2 diabetes) or not able to produce enough insulin (e.g. type 1 diabetes) it makes sense to reduce the insulin load of your food so your pancreas can keep up.

This list of foods has been optimised to reduce the insulin load while also maximising nutrient density.  These low insulin load, high nutrient density foods will lead to improved blood sugar control and normalised insulin levels.  Reduced insulin levels will allow body fat to be released and be used for energy to improve body composition and insulin resistance.

Also included in the table are the nutrient density score, percentage of insulinogenic calories, insulin load, energy density and the multicriteria analysis score score (MCA) that combines all these factors.

vegetables and fruit

image19

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
broccoli 25 36% 3 22 1.66
endive 16 23% 1 17 1.65
chicory greens 15 23% 2 23 1.60
alfalfa 10 19% 1 23 1.52
coriander 16 30% 2 23 1.50
escarole 12 24% 1 19 1.45
zucchini 19 40% 2 17 1.33
avocado -2 8% 3 160 1.30
beet greens 14 35% 2 22 1.28
curry powder 4 13% 14 325 1.28
olives -7 3% 1 145 1.24
spinach 22 49% 4 23 1.23
basil 20 47% 3 23 1.16
paprika 9 27% 26 282 1.14
asparagus 19 50% 3 22 1.08
mustard greens 9 36% 3 27 1.05
banana pepper 8 36% 3 27 1.01
sage 6 26% 26 315 1.00
turnip greens 13 44% 4 29 0.97
cloves 10 35% 35 274 0.96
parsley 15 48% 5 36 0.96
collards 7 37% 4 33 0.95
lettuce 16 50% 2 15 0.95
watercress 26 65% 2 11 0.94
summer squash 12 45% 2 19 0.93
Chinese cabbage 18 54% 2 12 0.91
chard 16 51% 3 19 0.91
cauliflower 15 50% 4 25 0.91
portabella mushrooms 18 55% 5 29 0.89
chives 13 48% 4 30 0.88
okra 14 50% 3 22 0.88
eggplant 4 35% 3 25 0.87
cucumber 7 39% 1 12 0.86
pickles 7 39% 1 12 0.86
red peppers 7 40% 3 31 0.86
arugula 10 45% 3 25 0.84
sauerkraut 5 39% 2 19 0.83
blackberries -2 27% 3 43 0.83
poppy seeds -2 17% 23 525 0.82
jalapeno peppers 4 37% 3 27 0.81

eggs and dairy

dairy20and20eggs

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
egg yolk 9 18% 12 275 1.34
cream 0 6% 5 340 1.32
sour cream 1 13% 6 198 1.25
whole egg 11 30% 10 143 1.22
cream cheese 1 11% 10 350 1.19
butter -1 2% 3 718 1.14
Swiss cheese 6 22% 22 393 1.08
cheddar cheese 5 20% 20 410 1.08
limburger cheese 1 19% 15 327 1.00
feta cheese 2 22% 15 264 0.99
camembert 1 21% 16 300 0.97
brie -0 19% 16 334 0.93
goat cheese -1 21% 14 264 0.90
blue cheese 0 21% 19 353 0.90
gruyere cheese 1 22% 23 413 0.87
Monterey cheese -1 20% 19 373 0.86
edam cheese 1 23% 21 357 0.85
gouda cheese 1 24% 21 356 0.85
muenster cheese -1 21% 19 368 0.85
mozzarella 7 34% 26 304 0.84
Colby -1 21% 20 394 0.82
ricotta -1 27% 12 174 0.81

nuts, seeds and legumes

image10

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
coconut milk -5 8% 5 230 1.09
coconut cream -6 8% 7 330 1.01
sunflower seeds 1 15% 22 546 0.99
brazil nuts -1 9% 16 659 0.98
coconut meat -5 10% 9 354 0.98
flax seed -2 11% 16 534 0.97
macadamia nuts -2 6% 12 718 0.97
tofu 7 34% 8 83 0.95
sesame seeds -3 10% 17 631 0.92
hazelnuts -3 10% 17 629 0.88
peanut butter 0 17% 27 593 0.88
pumpkin seeds 1 19% 29 559 0.86
walnuts -3 13% 22 619 0.83
pecans -6 6% 12 691 0.83

seafood

seafood-salad-5616x3744-shrimp-scallop-greens-738

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
mackerel 6 14% 10 305 1.35
caviar 15 33% 23 264 1.21
fish roe 22 47% 18 143 1.17
cisco 10 29% 13 177 1.17
trout 19 45% 18 168 1.09
salmon 23 52% 20 156 1.07
sardines 11 36% 16 185 1.00
herring 11 36% 19 217 1.00
anchovy 16 44% 22 210 0.98
sardine 11 37% 19 208 1.0
sturgeon 15 49% 16 135 0.87

animal products

7450703_orig

food ND % insulinogenic insulin load (g/100g) calories/100g MCA
beef brains 7 22% 8 151 1.27
lamb brains 7 27% 10 154 1.12
lamb liver 21 48% 20 168 1.10
lamb kidney 23 52% 15 112 1.09
beef tongue 0 16% 11 284 1.09
sweetbread -2 12% 9 318 1.07
bacon -2 11% 11 417 1.05
salami 2 18% 17 378 1.05
kielbasa -1 15% 12 325 1.03
bratwurst 0 16% 13 333 1.03
liver sausage -3 13% 10 331 1.02
turkey liver 18 47% 21 189 1.02
pepperoni 0 13% 16 504 1.02
pork ribs 1 18% 16 361 1.01
ground turkey 7 30% 19 258 0.98
park sausage 3 25% 13 217 0.98
chicken liver pate 8 34% 17 201 0.97
turkey bacon -1 19% 11 226 0.97
pork sausage 1 20% 16 325 0.97
meatballs -1 19% 14 286 0.95
T-bone steak 4 26% 19 294 0.94
chicken liver 18 50% 20 172 0.94
knackwurst -4 16% 12 307 0.92
beef sausage -2 18% 15 332 0.92
bologna -7 11% 9 310 0.91
liver pate -3 16% 13 319 0.91
turkey 1 20% 21 414 0.89
beef kidney 18 52% 20 157 0.88
roast beef 9 38% 21 219 0.86
duck -3 18% 15 337 0.86
blood sausage -5 14% 13 379 0.85
frankfurter -5 17% 12 290 0.85
lamb rib -2 19% 17 361 0.84

other dietary approaches

The table below contains links to separate blog posts and printable .pdfs detailing optimal foods for a range of dietary approaches (sorted from most to least nutrient dense) that may be of interest depending on your situation and goals.   You can print them out to stick to your fridge or take on your next shopping expedition for some inspiration.

dietary approach printable .pdf
weight loss (insulin sensitive) download
autoimmune (nutrient dense) download
alkaline foods download
nutrient dense bulking download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
autoimmune (diabetes friendly) download
zero carb download
diabetes and nutritional ketosis download
vegan (nutrient dense) download
vegan (diabetic friendly) download
therapeutic ketosis download
avoid download

If you’re not sure which approach is right for you and whether you are insulin resistant, this survey may help identify the optimal dietary approach for you.

image02