Tag Archives: insulin resistance

how optimize your diet for your insulin resistance

Lately I’ve seen a number of common themes come up at low carb conferences and online.  The contentious questions tend to run along the lines of:

  1. I did really well on a low carb diet initially, but my fat loss seems to have stalled. What gives?  What should I do now?
  2. If protein is insulinogenic should I actively avoid protein as well as carbs if my goal is to reduce insulin because low insulin = weight loss?
  3. If eating more fat helped kick start my weight loss journey, then why does eating more fat seem to make me gain weight now?

This article outlines some quantitative parameters around these contentious questions and helps you chose the most appropriate nutritional approach.

The importance of monitoring blood glucose levels

Coming from a diabetes headspace, I’ve seen firsthand the power of a low carb diet in reducing blood glucose and insulin levels.  As a Type 1 Diabetic, my wife Moni has been above to halve her insulin dose with a massive improvement in energy levels, body composition and mood.

If your blood glucose levels are high, then chances are your insulin levels are also high.  Insulin is the hormonal “switch” that causes us to store excess energy as body fat in times of plenty.[1]  Lower levels of insulin in times of food scarcity then enable us to access to the stored energy on our body.[2]


It makes sense to actively manage the fat storing insulin switch by proactively managing the insulin load of the food we eat.  The chart below shows that our glucose response is fairly well predicted by the carbohydrates we eat.  (note: The “glucose score” is the area under the curve of glucose response to various foods tested over the three hours relative to glucose which gets a score of 100%.) [3] [4]


Having high blood glucose levels is bad news.[5]  The chart below shows the correlation between HbA1c (a measure of your average glucose levels over three months) and the diseases that will kill most of us, cardiovascular disease, coronary heart disease and stroke.[6]  It makes a lot of sense to do whatever it takes to reduce our blood glucose to the levels of a metabolically healthy person to postpone the major diseases of aging.


Optimal ketone levels

Ketones in our blood rise when our insulin levels are low.[7]  As shown in the chart below, even better than carbohydrates, insulin levels are better predicted by the net carbohydrates plus about half the protein we eat.[8] [9]


You may have seen this ‘optimal ketone zone’ chart from Volek and Phinney’s ‘Art and Science of Low Carb Living’.


The problem however with this chart is that it is difficult for most people to achieve “optimal ketone levels” (i.e. 1.5 to 3.0mmol/L) without fasting for a number of days or making a special effort to eat a lot of additional dietary fat (which may be counterproductive in the long run if you’re trying to lose weight).


Recently I had the privilege of having Steve Phinney stay at our house when he spoke at a Low Carb Down Under event in Brisbane (btw, he’s also a passionate cook if you let him lose in the kitchen).  I quizzed Steve about the background to his optimal ketosis chart.  He said it was based on two studies, one with cyclists who the adapted to ketosis over a period of six weeks and another ketogenic weight loss study.  In both cases these ‘optimal ketone levels’ (i.e. between 1.5 to 3.0mmol/L) were observed in people who were transitioning into a state of nutritional ketosis.


Since the publication of this chart in the Art and Science books, Phinney has noted that well trained athletes who are long term fat adapted (e.g. the low carb athletes in the FASTER study[10]) actually show lower levels of ketones than might be expected.  It appears that over time many people, particularly athletes, move beyond simple keto adaption and are able to utilise fat as fuel even more efficiently and their ketone levels reduce further.

Metabolically flexible people are able to access and burn fat efficiently and hence only release free fatty acids or ketones into the bloodstream when they need the energy.  If you’re metabolically healthy and can call on your fat stores as required there’s no need to be walking around with super high levels of glucose or ketones.


If you’ve been following a ketogenic diet for a while and / or are metabolically healthy then your ketone levels may not be as high as you might expect from looking at Volek and Phinney’s “optimal ketone zone” chart.

And as discussed in my Alkaline Diet vs Acidic Ketones article, higher ketone levels could even be an indication that you have some level of metabolic acidosis.  People with untreated Type 1 Diabetes have very high ketone as well as blood glucose levels at the same time (i.e. ketoacidosis).

Phinney says he does not condone the “adolescent behaviour” of competing to see how high you can get your ketone levels and warns that you can risk loss of lean body mass by chasing high ketone levels with an inappropriately low insulin load approach (i.e. very low carb and very low protein).[11]

People with higher NAD+ levels (an important coenzyme which declines with aging[12]) and lower NADH levels are more likely to produce more breath acetone (which can be measured with the Ketonix) and less BHB ketones in the blood.   Hence, higher consistent levels of breath acetone may be a more useful indication than blood ketones that you are burning fat rather than just eating fat.[13]


“The ratio of β-OHB to AcAc depends on the NADH/NAD+ ratio inside mitochondria; if NADH concentration is high, the liver releases a higher proportion of β-OHB.”[14]

While I think it’s good to have some ketones in the blood as an indication that your insulin levels aren’t too high, it can be hard to interpret what high or low level of blood ketones mean.

As noted in Peter Attia’s Fat Flux article, the BHB ketones you measure in your blood is a function of:

  • the dietary fat that you’re eating,
  • plus the fat being liberated from your body fat (lipolysis),
  • minus the BHB being used by your muscles, heart and brain.

High blood ketones could mean that your insulin levels are low and your level of lipolysis is high (i.e. lots of fat is being released from your body).  In this case, high ketones are an indicator of metabolic health and may facilitate healthy appetite regulation and enable you to burn your stored body fat.

However, high blood ketone levels could also mean that you are eating a lot of dietary fat (or consuming a lot exogenous ketones) and your body isn’t well adapted to using ketones for fuel and hence unused ketones are building up in your blood stream.  If this is the case, then loading up with more dietary fat in the pursuit of higher ketone levels may cause you to become more insulin resistant and inflamed as your ketone levels rise but the fat is not yet able to be efficiently oxidised for fuel.

The plot below shows a compilation of glucose and ketone values from a range of people following a low carb or “ketogenic” diet.  It seems that the most metabolically healthy people have low blood glucose levels and moderate ketones at rest, however they can easily access plenty of glucose and fat from the body when required.


It makes sense to me from an evolutionary perspective that someone who is healthy would be able to conserve energy when not active (i.e. hiding in a cave) but then be able to quickly access stored energy when required (i.e. when being chased by a sabre-toothed tiger).  The body doesn’t always need super high blood ketone levels and hence we secrete insulin to remove both glucose and ketones back into storage.


The exception to this seems to be in periods of extended fasting when the body is on high alert and we are in a super-fuelled state ready to chase down some food at a moment’s notice.

So, unless you’re fasting or exercising intensely, it seems that having a lower total energy (i.e. blood glucose plus blood ketones) might be a better place to be rather than having super high ketone levels.

There is also interesting emerging research suggesting that as we become more fat adapted we can obtain more fuel from fat and hence do not need to rely on ketones which are more of an emergency fuel source during starvation.  It’s as if, just like in time we no longer measure high ketones in the urine as we utilise them better, we also start to show less ketones in the blood.  Quoting my friend Mike Julian:

I think we become less ketogenic with further adaptation simply because as we improve our ability to utilize the fat we create spin off glucose from both glycerol and acetone that goes to restore beta oxidation of fatty acids.

The spin of glucose provides oxaloacetate and restores Krebs function in the liver and reduces ketogenesis in favour of complete oxidation of acetyl-CoA. In short, ketogenesis is a transitional state, not the end goal.

Ketones will be lower if you’re fit.  Even Phinney has said that very adapted individuals are in ketosis starting at 0.3mmol.  Look at how robust the GNG is in the low carb guys in the FASTER study. It is a direct result of the nearly doubled rate of fat oxidation.

All of the glycerol when fat is oxidised has to go somewhere and it is used to make glucose. This glucose is then used to restore the Krebs cycle which means that the can make even better use of fat etc, but reduces GNG via traditional means and in turn reduces ketogenesis.

It’s a system that feeds into itself.  The better fat burner you are, the more glucose you make from fat, the better you are at fat burning and so on.

As we get better at fat utilisation we also get better at deriving glucose from fat metabolism. This source of glucose reduces the need for ketogenesis.[15] [16]

So overall, measuring blood ketones is intriguing, but not always the most reliable measure of where your metabolic health status.  Moreover, eating more dietary fat in an effort to raise your blood ketone levels is no guarantee that you’re going to lose body fat.[17]


You may be “ketogenic” in that you are able to generate ketones, though they may not necessarily show up in high levels in the blood if you are also athletic and able to use your blood glucose and ketones effectively for energy.

The relationship between ketones and glucose

The chart below shows the generalised relationship between blood glucose and blood ketones for different people with:

  • Type 2 Diabetes,
  • Pre-diabetes,
  • Mild insulin resistance, and
  • someone who is metabolically healthy.

(note: Someone with uncontrolled Type 1 Diabetes would be literally ‘off the chart’ with high blood glucose and high blood ketones.)


The table below shows the HbA1c incident rates for cardiovascular disease, stroke and coronary heart disease from the chart above to average blood glucose levels and the corresponding ketone levels and glucose : ketone index values.   This gives us a useful understanding of what different HbA1c risk levels look like in terms of average blood glucose levels, ketones and the glucose : ketone index.

metabolic health level HbA1c average blood glucose ketones GKI
 (%)  (mmol/L)  (mg/dL)  (mmol/L)
low normal 4.1 3.9 70 2.1 1.9
optimal 4.5 4.6 83 1.3 3.5
excellent < 5.0 < 5.4 < 97 > 0.5 11
good < 5.4 < 6 < 108 < 0.3 30
danger zone > 6.5 7.8 > 140 < 0.3 39

While it can be interesting to measure ketones, as a general rule, if you have consistently high blood glucose levels you are likely to be insulin resistant and hence will benefit from a higher fat dietary approach.

If you have high insulin and glucose levels, when transitioning to a high fat diet your glucose and insulin levels will likely plummet to be closer to the levels of a metabolically healthy person and suddenly you will be able to access your body fat stores for fuel.  You might quickly find yourself losing weight like it was magic and you’ll think the keto diet is the best thing ever!  Amazingly, lots of people find that they can “eat fat to satiety” and still lose weight (at least during this initial stage).

For the last four decades we’ve been told to avoid fat, particularly saturated fat.  Imagine the excitement, enthusiasm, and maybe even anger, when someone who has been avoiding fat finds that they suddenly start losing weight when the do the opposite to what they’ve been told to do!

But it works until it doesn’t

The problem with adding more dietary fat is that it works until it doesn’t.

Let’s say (based on the levels of metabolic health in the table above) you are able to successfully “level up” from the “danger zone” though “good” blood glucose control to “excellent” blood glucose levels with a high fat dietary approach, but then your weight loss slows and then stops well short of your optimal body fat levels.

What gives?

What do you do now?

Do you listen to the people who say you should eat more fat or the people who say you should eat less fat?

It can be confusing on the interwebs!

I think the answer depends largely on whether you are insulin resistant or insulin sensitive.  You should ‘level up’ to the most nutrient dense nutritional approach that your current level of insulin sensitivity allows.

It’s worth noting that while many people can achieve ‘excellent’ blood glucose levels through dietary manipulation, the people that I’ve seen get to truly optimal blood glucose control tend to be working hard with both their nutrition and training to maximise their lean body mass.

What is insulin resistance anyway?

In order to understand what we need to do when we stop losing weight on keto I think it’s important to understand what causes insulin resistance.

Many people think that people who are fat are simply insulin resistant.  This is partly true.   However, while insulin resistance and obesity are related, it’s not quite that simple.  It’s useful to understand the difference.


A metabolically flexible insulin sensitive person stores excess energy eaten for later use in the fat stores on the body (i.e. adipose tissue).  When they stop eating, someone who is insulin sensitive will experience a drop in blood glucose and insulin levels and stored body fat will be released.   For the lucky people who are insulin sensitive, calories in calories out (CICO) largely works as advertised.  They find it difficult to depart far from a healthy set point weight without a change in diet quality or insulin load.


However, as we keep eating more and more low nutrient density foods to obtain the micronutrients we need, we get to a point where the adipose tissue can no longer hold all that excess energy and starts to channel it into the organs because the fat stores are full.

The body knows that this isn’t such a great idea though because our vital organs are, well, vital, so the body becomes insulin resistant as a defence mechanism to avoid damage to vital organs, and hence the levels of sugar in our blood rise to avoid storing the extra energy in the organs.   The body even starts dumping the excess sugar into the urine to avoid having to pump it into the liver, pancreas, eyes and brain.


The a of the major problems with insulin resistance is appetite dysregulation.  That is, when you are insulin resistant your insulin levels stay higher for longer which then makes it harder for you to access your body fat for fuel between meals.   As shown in this chart, if your blood glucose levels are high the release of fat from your body (ketones) will be low, ghrelin will kick in[18], and it will be hard to go very long without food.  Your appetite will be more likely to win out over your willpower and thus make it hard to lose weight if your insulin levels are high.


Eating “low carb” or “keto” enables us to lower insulin levels to the point that our appetite works more in line with the way it’s meant to when we were metabolically healthy / insulin sensitive / metabolically flexible.  Our appetite drives us to seek out nutrients and energy when required and stop when we have had enough.   (note: keep in mind though that lower insulin levels are due to eating a lower dietary insulin load, not necessarily due to more dietary fat.)

Once our appetite is restored and we can more easily access our own body fat I think we need to change focus, especially if adding more fat isn’t moving you toward your weight loss goals.

Be a nutrient chaser

Once your blood glucose levels are normalised but you’re stuck on a plateau and not sure where to turn I think it’s a good idea to turn your focus to chasing nutrients rather than ketones or even worrying about blood glucose levels quite so much.


As your blood glucose and insulin levels decrease, you should be able to release more body fat stores and hence have less need for dietary fat.  When we focus on balancing micronutrients macronutrients largely look after themselves.


As well as adequate energy, the body works hard to make sure it gets the nutrients it needs to thrive.  The vitamins and minerals that come with whole foods are like the spark that ignites the fuel they contain.[19]  We always get ourselves into trouble when we separate nutrients from energy.  While refined sugars and grains are particularly problematic because they spike insulin, neither refined sugars or purified fats contain the same level of nutrients necessary to power our mitochondria that whole foods do.

The problem comes when we eat nutrient poor foods.  We are left with a residual need for nutrients that are required to convert our food into energy (ATP).  Our appetite will drive us to seek out more food to obtain the required nutrients.

“Added sugars displace nutritionally superior foods from the diet and at the same time increase nutritional requirements. Specifically, vitamins such as thiamine, riboflavin and niacin are necessary for the oxidation of glucose, and phosphates are stripped from ATP in order to metabolise fructose, which leads to cellular ATP depletion. The metabolism of fructose also leads to oxidative stress, inflammation and damage to the mitochondria, causing a state of ATP depletion. Hence, the liberation of calories from added sugars requires nutrients, and increases nutritional demands, but these sugars provide no additional nutrients. Thus, the more added sugars one consumes, the more nutritionally depleted one may become. This may be particularly extreme in individuals whose habitual diet is already lacking in key micronutrients.”[20]

“A nourishing, balanced diet that provides all the required nutrients in the right proportions is the key to minimising appetite and eliminating hunger at minimal caloric intake.”[21]

“To produce ATP efficiently, the mitochondria need particular things.  Glucose or ketone bodies from fat and oxygen are primary.   Your mitochondria can limp along, producing a few ATP on only these three things, but to really do the job right and produce the most ATP, your mitochondria also need thiamine, riboflavin, niacin, pantothenic acid, minerals (especially sulfur, zinc, magnesium, iron and manganese) and antioxidants.   Mitochondria also need plenty of L-carnitine, alpha-lipoic acid, creatine, and ubiquinone (also called coenzyme Q) for peak efficiency.”[22]

If we don’t get enough amino acids to prevent loss of lean muscle mass the body will also up-regulate appetite (i.e. protein leverage hypothesis).[23] [24]   While we can track our food intake to try to actively manage our energy intake, in the end, appetite, driven by the body’s need for nutrients, tends to win out.

Even if we are successful in limiting our intake, our body senses an energy crisis and slows down to make sure it has enough energy and stored fat to run our inefficient metabolism.  However, when we consume whole foods with a higher nutrient density our appetite tends to be satisfied with less energy because it can run more efficiently with an optimal balance of the nutrients it needs.[25]


If we want to lose weight we need to find a way to provide the body with the nutrients it needs to function optimally with the minimum amount of energy intake while still maintaining low enough blood glucose and insulin levels to allow energy to flow out of our fat stores. 

Ask the experts

There was an interesting panel discussion in Episode 1161 of Jimmy Moore’s Livin La Vida Low Carb Show “Q&A Medical Panel – 2016 Low Carb Cruise” where someone asked:

LCHF says calories don’t matter.  But I still gain weight even when in ketosis.  What’s up with that?

There was a range of responses from the panel of medical doctors, not all in agreement, but my favourite answer was from Dr Ted Naiman (pictured below on the cruise) who said:

I have tons of patients who absolutely plateau out on this diet.   Everyone who goes on LCHF loses a ton of weight, and then hits a plateau.  This is extremely common.  Almost universal.  

If you eat enough fat, the flow of fat into your adipose sites will equal the flow of fat out of your adipose sites and you’re just going to plateau. 

My number one priority is nutrient density.  Eat less fat bombs and instead eat the highest nutrient density foods you possibly can and then more of the fat that you’re burning comes from your internal body stores. 

I recommend really high fat diets for people who are really glucose dependent to help them get fat adapted.  Then, once you have reached your ideal body weight you have to eat a high fat diet then as well because you’re burning fat.  But there is a period in the middle when you’re plateaued when you do want to eat less fat because you want your fat to come off stored body fat.  


Are you really insulin resistant?

I think the critical question here is whether you are really insulin resistant.  The most useful measure is simply to test your blood glucose levels.

If you have been diagnosed with diabetes, then you will have a glucose meter and you’ll be able to easily test your blood glucose levels to know where you’re at.  Glucometers are fairly cheap to purchase and often come with a rebate.


There are many people who are fatter than they want to be but still have reasonable insulin sensitivity and normal blood glucose.  For these people, eating more fat doesn’t always get them where they want to be.[26] [27]

At the same time, many skinny people are actually insulin resistant (TOFI).  It of depends on how much energy your belly is willing to store before it starts pumping the excess fat into your vital organs.

The irony here is that you may look healthier if you are skinny, but it may mean that your adipose tissue is able to store less energy before it transitions to start storing excess energy in your vital organs.


For those of you that don’t like testing your blood glucose level I have outlined a number of other ways to determine whether you are actually insulin resistant.  This understanding can then be used to understand whether you may need more or less dietary fat.

Oral glucose tolerance test

An Oral Glucose Tolerance Test (OGTT) is the generally accepted medical test for insulin resistance and diabetes.  An OGTT measures someone’s rise in blood glucose in response to a large amount of ingested glucose.   If it goes up too much after a standard amount of glucose then you are deemed to be insulin resistant.


The problem is most people following a low carb approach will likely fail an OGTT because of physiological insulin resistance.  Someone following a low carb diet won’t have a lot of insulin circulating in their body, so when they ingest a large amount of fast acting glucose their pancreas will respond from a “standing start” and has to pump out a lot of insulin to respond to the glucose.  The glucose levels of someone following a low carb dietary approach may rise quite a lot before the pancreas can catch up.

By comparison, someone eating more carbohydrates would have higher levels of insulin circulating that will act on the glucose as soon as it was ingested with only a little bit of extra insulin needing to be secreted in response to the food and hence the glucose response would be lower.

Kraft test

A Kraft Insulin Assay, which measures insulin response over time to a certain amount of glucose, will give you an accurate idea of whether you’re insulin resistant, however these tests are expensive and fairly hard to obtain.  A Kraft Test might be a useful way to see if your are becoming insulin resistant even if your glucose levels are keeping up, for now.


Oral protein tolerance test

Whether or not your blood glucose levels rise or decrease in response to a high protein meal with no carbohydrate is also a useful way to understand if you are insulin resistant.


Someone who is metabolically healthy will release glucagon and insulin in response to protein as it is metabolised to maintain a stable glucose level.[28]  Someone who is insulin resistant may not produce adequate insulin to counteract the glucagon released by the liver and hence they may see their blood glucose levels rise.

If you find your glucose levels do rise significantly response to protein, it may be a sign that you need to slow down a little on the protein (or at least limit processed protein powders and opt for whole food sources of protein which are harder to overeat).

Realistically though, unless you’re severely insulin resistant, have Type 1 Diabetes or are using therapeutic ketosis to manage a chronic health condition such as cancer, epilepsy, alzheimers or dementia, most people don’t need to micromanage their protein intake if they are eating a range of unprocessed whole foods.

Your ability to handle protein may improve with time as your insulin resistance improves or you build a bit more muscle mass.  Actively avoiding protein to minimise insulin may be counterproductive in the long term if it leads to loss of lean body mass.

Optimal dietary approach survey

While testing blood glucose is a pretty good indicator of your insulin resistance status, there are a number of reasons that you may not want to test, including:

  • you don’t yet own a blood glucose meter,
  • you don’t like the sight of your own blood, or
  • test strips can be expensive, especially if not covered by insurance.

Beyond testing your blood glucose and / or ketone levels, there are a wide range of other indicators that you may be insulin resistant and may need a higher fat dietary approach.   I have prepared this multiple choice survey to help people better understand which dietary approach might be ideal for them based on their situation and goals.


You may be insulin resistant and / or benefit from a higher fat diet if you answer yes to most of these of these questions.[29]   If you answer no to most of these questions then you may do better if you focus on nutrient dense foods rather than more fat.

  1. Do you have a chronic health condition such as cancer, epilepsy, dementia, Alzheimer’s, Parkinson’s, severe insulin resistance or traumatic brain injury?
  2. Have you been diagnosed with diabetes?
  3. Is your HbA1c greater than 6.4%?
  4. Is your fasting glucose greater than 7.0 mmol/L?
  5. Is your post meal glucose level greater than 11.0mmol/L or 200 mg/dL?
  6. Is your triglyceride : HDL ratio greater than 3.0?
  7. Are your triglycerides greater than 1.1mmol/L or 100mg/dL?
  8. Are your blood ketone levels less than 0.3mmol/L?
  9. Is your fasting insulin greater than 20 uIU/mL or 120 pmol/L?
  10. Is your C-reactive protein greater than 1.0 mg/dL?
  11. Does your blood glucose level rise significant after eating a large protein only meal?
  12. Do you have a big hard belly (fat stored around the organs not on the surface)?

Can I take my insulin levels to zero?

You cannot eliminate your need for insulin by eating a 100% fat diet, or even not eating at all.

Back in the 70s Dr Richard Bernstein worked out by self experimentation that people with Type 1 Diabetes require both basal and bolus insulin.  Basal insulin is required, regardless of food intake, to stop the body from breaking down its own lean body mass.  Bolus insulin is required to metabolise the food eaten.[30]

Someone on a typical western diet has about a 50:50 ratio of basal to bolus insulin.  Someone on a low carb diet will require less insulin, however 80% of their insulin dose required as basal insulin and the remaining 20% for their food.  While the body typically doesn’t secrete insulin in response to fat, and appetite is often reduced on a high fat diet, if we force an energy excess with high levels of processed fats there will always be enough basal insulin circulating in the blood to remove the excess energy to our fat stores.

Someone with Type 1 will modify their insulin sensitivity factor in their insulin pump to match their insulin sensitivity to optimise their blood glucose control.  People without Type 1 Diabetes can change their insulin sensitivity (and hence require less insulin) by, amongst other things, being exposed to less insulin[31] and improving our level of lean body mass (muscle) and mitochondrial function.  It is important to ensure your diet has adequate protein to build muscle as well as exercising that muscle to make sure our body is well trained and efficient at using that energy.


Having well trained lean muscle mass is critical to glucose disposal and insulin action and thus reducing overall insulin levels.[32]  In addition to avoiding foods that quickly raise our blood glucose levels, we need to train our body to dispose of the glucose effectively and efficiently with less reliance on large amounts of insulin through building lean body mass.  This is achieved by (amongst other things like sleep, sunlight, reduced stress etc) eating nutrient dense foods that power up the mitochondria to enable us to burn the energy efficiently.

So just tell me what to eat!

I have prepared the table below to guide people to the most optimal foods based on their blood glucose levels and current level of insulin resistance and whether you need to lose weight (based on your waist to height ratio[33]).

approach average glucose waist : height
(mg/dL) (mmol/L)
therapeutic ketosis > 140 > 7.8
diabetes and nutritional ketosis 108 to 140 6.0 to 7.8
weight loss (insulin resistant) 100 to 108 5.4 to 6.0 > 0.5
weight loss (insulin sensitive) < 97 < 5.4 > 0.5
nutrient dense maintenance < 97 < 5.4 < 0.5

There’s no nutrient poor processed grains or added sugars in any of these lists.


The therapeutic ketosis foods have higher levels of added fat.  The nutrient dense weight loss foods contain more lean proteins and non-starchy veggies and less added fat.


Someone with poorly controlled Type 2 Diabetes may start out on a high fat ketogenic approach (say 2:1 fat to protein by weight), in time they should be able to progressively ‘level up’ to more nutrient dense foods as their insulin sensitivity improves and they find their blood glucose levels can tolerate it.


Someone who has long standing diabetes or who has Type 1 Diabetes may settle on a 1:1 for maintenance.  Someone who becomes more insulin sensitive may be able to cut their dietary fat down even more as they are more easily able to release fat from their body fat stores.  Even if someone wanting to lose weight got down to a 1:0.5 protein to fat ratio by weight the majority of their energy is still coming from fat, they’re just given their body a better chance of needing to use dietary fat.

I hope this helps you find the optimal approach for you.  I would love to hear how it goes.


[1] https://optimisingnutrition.com/2015/06/22/why-we-get-fat-and-what-to-do-about-it-v2/

[2] http://bja.oxfordjournals.org/content/85/1/69.long

[3] https://optimisingnutrition.com/2015/06/29/trends-outliers-insulin-and-protein/

[4] https://ses.library.usyd.edu.au/handle/2123/11945

[5] https://optimisingnutrition.com/2015/03/22/diabetes-102/

[6] http://cardiab.biomedcentral.com/articles/10.1186/1475-2840-12-164

[7] https://optimisingnutrition.com/2015/03/23/most-ketogenic-diet-foods/

[8] https://optimisingnutrition.com/2015/06/29/trends-outliers-insulin-and-protein/

[9] https://ses.library.usyd.edu.au/handle/2123/11945

[10] http://www.sciencedirect.com/science/article/pii/S0026049515003340

[11] https://youtu.be/r8uSv6OgHJE?t=2080

[12] https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide

[13] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737348/pdf/OBY-23-2327.pdf

[14] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102118/

[15] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140964/

[16] https://www.facebook.com/groups/198981013851366/permalink/261051057644361/?comment_id=261276760955124&comment_tracking=%7B%22tn%22%3A%22R4%22%7D

[17] https://www.youtube.com/watch?v=r8uSv6OgHJE&feature=youtu.be

[18] http://www.nature.com/ejcn/journal/v67/n7/abs/ejcn201390a.html

[19] https://www.amazon.com/Nutritional-Approach-Revised-Model-Medicine-ebook/dp/B00CXECDI8/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=&sr=

[20] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975866/

[21] http://perfecthealthdiet.com/

[22] http://terrywahls.com/about-the-wahls-protocol/

[23] http://sydney.edu.au/science/outreach/inspiring/news/cpc.shtml

[24] http://www.nature.com/ejcn/journal/vaop/ncurrent/full/ejcn2016256a.html

[25] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988700/

[26] https://optimisingnutrition.com/2016/06/13/low-energy-density-high-nutrient-density-foods-for-weight-loss/

[27] https://www.dropbox.com/s/n8tzuiixb1n1cxi/Weight%20Loss%20on%20Low-Fat%20vs.%20Low-Carbohydrate%20Diets%20by%20Insulin%20Resistance%20Status%20Among%20Overweight%20Adults%20and%20Adults%20With%20Obesity-%20A%20Randomized%20Pilot%20Trial%20(1).pdf?dl=0

[28] https://optimisingnutrition.com/2015/06/15/the-blood-glucose-glucagon-and-insulin-response-to-protein/

[29] http://www.thebloodcode.com/

[30] https://www.youtube.com/watch?v=6lrbxITXAVA

[31] https://www.ncbi.nlm.nih.gov/pubmed/21241239

[32] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343294/

[33] https://en.wikipedia.org/wiki/Waist-to-height_ratio

nutrient dense foods for weight loss and insulin resistance

I’ve talked to a number of people recently who use a combination of the optimal foods for diabetes and nutritional ketosis and the optimal foods for weight loss lists.

So I thought it would be useful to combine the two approaches into a single list of foods for people who want to lose weight but who were still somewhat insulin resistant.

If you’re someone who is moderately insulin resistant and also wants to lose weight then…  read on.

optimal foods for diabetes and nutritional ketosis

My food ranking system revolves around manipulating three parameters to suit different people with different goals:

  • insulin load
  • nutrient density, and
  • energy density.

The optimal foods for diabetes and nutritional ketosis list has a low insulin load, is fairly low in non-fibre carbs and moderately high fat while still being as nutrient dense as possible.

This approach suits someone who has Type 1 Diabetes or is lean and looking to achieve nutritional ketosis.  People who are at their goal weight can afford to eat a little more added dietary fat.


While  most people looking to manage their blood glucose levels limit their carbohydrates to some arbitrary number that works for them, maximising nutrient density as well will help you to improve your mitochondrial function and increase your energy levels to ideally overcome your insulin resistance.  Maximising nutrient density also means that your body won’t keep on seeking out more and more food to obtain the nutrients it requires.

People who are very insulin resistant often do well on a higher fat dietary approach initially to let the insulin levels drop, however they often find further success in the long term if they drop their dietary fat to let more fat come from their body.

optimal foods for weight loss

The optimal foods for weight loss list is fairly low in dietary fat to allow for to come form the body during weight loss.  It’s heavy in lean proteins and non-starchy veggies and is VERY nutrient dense.  The chart below shows a comparison of a range of dietary approaches with the insulin sensitive weight loss approach being having the highest nutrient density while the diabetes and nutritional ketosis approach comes in at #8 of thirteen.


This list of foods may look like a low fat dietary approach, but it’s not really low fat once you factor in your body fat.  The chart from Steve Phinney illustrates how your body fat makes a contribution to the weight loss phase of a well formulated ketogenic diet.

2016-10-10 (1).png

The weight loss list of foods is also quite bulky (i.e. lots of fibre and water) so they would be very hard to overeat if you stick to just these foods.  The chart below show a comparison of the various approaches with the weight loss approach having the lowest energy density.


Eating from the weight loss foods basically equates to a protein sparing modified fast (which is widely held to be the most effect way to lose weight in the long term) meaning that will fill you up so much you won’t be above to overeat while at the same time providing enough protein to preserve lean muscle mass during the weight loss phase.

The “problem” with the aggressive weight loss approach is that it is very low in energy dense comfort foods and it is higher in carbohydrates and protein than most low carbers might be used to, so it might be harder to stick to.  It may also raise your blood glucose levels if you’re still somewhat insulin resistant.

finding the optimal balance between the extremes

I have designed this list of foods for people who are insulin resistant and also looking to lose weight provides a balance between both extremes – high nutrient density, lowish levels of dietary fat and lower energy density.

The foods listed below represent the top 10% of the USDA food database using this ranking system.  I’ve included the nutrient density score, percentage of insulinogenic calories, insulin load (per 100g), energy density (per 100g) and the multicriteria analysis score score (MCA) that combines all these factors.

The chart below shows the amount of each nutrient provided by the more balanced approach compared to average of all the foods in the USDA food database.  As you can see you will still be able to obtain heaps of nutrients while the fat comes from your body.



food ND % insulinogenic insulin load (g/100g) calories/100g MCA
broccoli 23 36% 3 22 2.07
endive 15 23% 1 17 1.84
coriander 16 30% 2 23 1.79
zucchini 18 40% 2 17 1.75
chicory greens 14 23% 2 23 1.74
spinach 20 49% 4 23 1.66
escarole 11 24% 1 19 1.58
basil 17 47% 3 23 1.55
alfalfa 9 19% 1 23 1.51
watercress 22 65% 2 11 1.51
beet greens 13 35% 2 22 1.49
asparagus 16 50% 3 22 1.44
lettuce 14 50% 2 15 1.33
Chinese cabbage 15 54% 2 12 1.29
summer squash 12 45% 2 19 1.26
okra 13 50% 3 22 1.26
parsley 13 48% 5 36 1.25
cauliflower 13 50% 4 25 1.23
chard 13 51% 3 19 1.22
portabella mushrooms 14 55% 5 29 1.20
mustard greens 9 36% 3 27 1.20
arugula 11 45% 3 25 1.17
turnip greens 10 44% 4 29 1.17
chives 11 48% 4 30 1.14
banana pepper 8 36% 3 27 1.13
paprika 9 27% 26 282 1.11
cucumber 7 39% 1 12 1.08
pickles 7 39% 1 12 1.08
collards 7 37% 4 33 1.07
celery 10 50% 3 18 1.03
brown mushrooms 16 73% 5 22 1.01
avocado -0 8% 3 160 0.99
white mushroom 13 65% 5 22 0.99
shitake mushroom 12 58% 7 39 0.98
red peppers 6 40% 3 31 0.98
dandelion greens 10 54% 7 45 0.97
sauerkraut 5 39% 2 19 0.96
dill 11 59% 8 43 0.96
eggplant 4 35% 3 25 0.95
cloves 9 35% 35 274 0.95
radishes 6 43% 2 16 0.94
sage 7 26% 26 315 0.93
jalapeno peppers 5 37% 3 27 0.93
curry powder 3 13% 14 325 0.92
edamame 7 41% 13 121 0.89
chayote 5 40% 3 24 0.88
olives -5 3% 1 145 0.80
Brussel sprouts 6 50% 6 42 0.78
spirulina 11 70% 6 26 0.76
soybeans (sprouted) 6 49% 12 81 0.76
cabbage 7 55% 4 23 0.75
blackberries -1 27% 3 43 0.71
artichokes 5 49% 7 47 0.71


food ND % insulinogenic insulin load (g/100g) calories/100g MCA
fish roe 18 47% 18 143 1.45
salmon 19 52% 20 156 1.44
trout 16 45% 18 168 1.36
caviar 13 33% 23 264 1.25
oyster 16 59% 14 102 1.19
cisco 9 29% 13 177 1.17
sturgeon 13 49% 16 135 1.13
mackerel 6 14% 10 305 1.08
anchovy 12 44% 22 210 1.08
crab 17 71% 14 83 1.01
sardines 9 36% 16 185 1.01
flounder 13 57% 12 86 1.01
herring 9 36% 19 217 0.97
sardine 9 37% 19 208 1.0
halibut 15 66% 17 111 0.96
tuna 12 52% 23 184 0.91
rockfish 13 66% 17 109 0.86
lobster 14 71% 15 89 0.85
crayfish 12 67% 13 82 0.82
shrimp 13 69% 19 119 0.81
pollock 13 69% 18 111 0.79
perch 10 62% 14 96 0.73

animal products


food ND % insulinogenic insulin load (g/100g) calories/100g MCA
lamb liver 19 48% 20 168 1.47
lamb kidney 19 52% 15 112 1.45
turkey liver 16 47% 21 189 1.25
beef brains 8 22% 8 151 1.24
veal liver 17 55% 26 192 1.20
beef liver 17 59% 25 175 1.14
chicken liver 14 50% 20 172 1.13
beef kidney 14 52% 20 157 1.10
lamb brains 6 27% 10 154 1.05
chicken liver pate 7 34% 17 201 0.91
lamb heart 10 48% 19 161 0.90
ham 12 59% 17 113 0.88
ground turkey 6 30% 19 258 0.88
turkey heart 9 47% 20 174 0.85
rib eye steak 8 41% 21 210 0.84
roast pork 7 41% 20 199 0.83
roast beef 7 38% 21 219 0.83
beef tongue 1 16% 11 284 0.81
lamb sweetbread 6 43% 15 144 0.79
lamb chop 8 42% 25 234 0.79
lean beef 11 61% 23 149 0.78
beef heart 9 52% 23 179 0.78
park sausage 2 25% 13 217 0.78
pork liver 11 59% 23 165 0.77
turkey meat 8 52% 21 158 0.74
turkey drumstick 8 52% 21 158 0.74
chicken 10 60% 22 148 0.73

dairy and egg


food ND % insulinogenic insulin load (g/100g) calories/100g MCA
whole egg 9 30% 10 143 1.20
egg yolk 8 18% 12 275 1.15
sour cream 2 13% 6 198 1.02
cream 2 6% 5 340 0.93
cream cheese 2 11% 10 350 0.84
Swiss cheese 5 22% 22 393 0.80
cheddar cheese 5 20% 20 410 0.78
Greek yogurt 3 37% 9 97 0.74

other dietary approaches

The table below contains links to separate blog posts and printable .pdfs for a range of dietary approaches (sorted from most to least nutrient dense) that may be of interest depending on your situation and goals.   You can print them out to stick to your fridge or take on your next shopping expedition for some inspiration.

dietary approach printable .pdf
weight loss (insulin sensitive) download
autoimmune (nutrient dense) download
alkaline foods download
nutrient dense bulking download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
autoimmune (diabetes friendly) download
zero carb download
diabetes and nutritional ketosis download
vegan (nutrient dense) download
vegan (diabetic friendly) download
therapeutic ketosis download
avoid download

If you’re not sure which approach is right for you and whether you are insulin resistant, this survey may help identify the optimal dietary approach for you.


hyperinsulinemia, food, infection and the monthly female cycle

  • A wide range of the major health issues that we face in the western world appear to be associated with high levels of insulin (hyperinsulinemia).
  • More people have impaired insulin sensitivity but wouldn’t know it just from looking at their blood glucose levels.
  • Insulin sensitivity is influenced by a wide range of factors including food, infections, fasting and hormones.
  • Fasting can be helpful for people who are unable to optimise their insulin with a low carbohydrate diet alone.
  • Insulin requirements tend to increase by about 10 to 15% in the three or four days leading up to the monthly menstrual period.


You may be aware of the work of Dr Joseph Kraft that has recently been re-discovered by Catherine Crofts and Ivor Cummins.  Dr Kraft carried out insulin response tests in more than 14,000 people and found that t he majority of them had some form of insulin resistance.  People who are insulin resistant need to secrete more insulin to maintain normal blood glucose levels.  These high levels of insulin can lead to fat gain and other metabolic issues.[1]


Catherine Crofts, Caryn Zinn, Mark Wheldon and Grant Schofield recently published a paper looking at the various diseases that are affected by hyperinsulinemia including:

  • cancer
  • atherosclerosis
  • cardiomyopathy
  • endothelial dysfunction
  • thrombosis
  • diabetes (gestational and type 2)
  • non-alcoholic fatty liver disease
  • chronic inflammation
  • obesity
  • Alzheimer’s diseases and vascular dementia
  • retinopathy
  • osteoporosis
  • nephropathy [2]

In view of this ominous list of health issues it would make sense to try to actively avoid hyperinsulinemia.  Managing insulin resistance and optimising fat metabolism is critical for your overall health.  This article looks at the wide range of things that influence insulin sensitivity and what you can do about it.


While our food intake is not the only factor that influences hyperinsulinemia it is one that we can actively manage.

Measuring insulin in the blood stream is expensive and not commonplace.  Individuals with type-1 diabetes, however, provide a unique opportunity to understand the things that affect insulin demand.

Measuring the insulin requirement for someone with type 1 diabetes is as simple as downloading the data form their insulin pump into a spreadsheet.  My wife Monica’s daily insulin usage over eighteen months is shown in the chart below.


Diabetes is an ongoing struggle!  Monica has been torn between mainstream advice that says that fat is bad and you’ll get fat and have a heart attack if you have too much of it, and her husband who keeps banging on about low carbohydrate, Paleo and ketogenic dietary approaches that might help her improve her diabetes control!

After generally trying to follow a paleo template for a couple of years in July 2014 she started taking the low carb thing a bit more seriously in an effort to gain control of her blood glucose levels.  Between August and December 2014 her insulin requirements came down from about 36 units per day to about 28 units per day!

Then, in January, when we came across the TYPEONEGRIT Facebook group and saw what people were eating to get flat line blood sugars, she ramped up her efforts to further refine how we ate, with a renewed motivation and belief that it could make a difference.

We also spent a week in Vanuatu around Christmas which likely helped to improve the cortisol levels and improve gut health with the sunshine, salt water and nutrient dense food.  In the period between January and March 2015 her insulin requirements came down even further to about 24 units per day from up to 40 units per day six months before.  During this period she had the best blood glucose levels in the thirty years of being a type 1 diabetic.

In April, because of her increased health and vitality, she started working more which may have affected her stress which may have influenced her insulin requirements.  In June she got a kidney infection with her insulin demand increasing significantly as her body fought the infection.  I even wonder if the period where the insulin requirement is building before June suggests that she might be getting run down and possible the insulin requirements building up.

People with diabetes who take insulin will also put on weight.  This is generally true for people with both type 1 and type 2 unless their carbohydrates are restricted.  Even though the insulin demand has varied during this time Monica has managed to lose about ten kilograms to achieve an ideal body weight that puts her in the middle of the ideal BMI range.


Jason Fung has been instrumental in highlighting that insulin drives obesity and notes that the most effective way to reduce insulin is to increase the time between meals.

People with type 1 diabetes find that they require much less insulin during fasting and for a period after fasting due to improved sensitivity.

Those of us with a functioning pancreas can track insulin by measuring blood glucose and blood ketones at the same time.  Cancer researcher Dr Thomas Seyfried suggests that the glucose : ketone index (GKI) is a good proxy for insulin levels (see this article for more detail on how the GKI).

Jimmy Moore recently did a seventeen day fast with daily Periscope video updates[3] where he documented his blood sugar and ketones which are shown in the chart below.  Jimmy usually maintains good blood sugar levels and high ketone levels with his ketogenic diet, however a few days into the fast the ketone levels kicked up even more (see orange dots in the chart below).


I’ve also plotted Jimmy’s GKI values through this period which also gives us a feel for his insulin levels.  You can see that in the first few days his GKI plummeted as he exhausts his glycogen stores and is forced to start burning body fat, with ketones rising and glucose levels dropping.


Although Jimmy was hoping to make it through to three weeks of fasting, towards the end of the fast he started to feel poorly with travel and stress (and perhaps an infection) and chose to terminate the fasting.   Sickness is often linked with poor blood glucose levels or insulin resistance.

Chris Kelly of Nourish Balance Thrive says:

“My experience has been whenever there is high blood sugar, there is yeast overgrowth.”

RD Dikeman who runs the TypeOneGrit Facebook group said

“You can spot the infections with blood glucose rise and increased insulin demand typically before symptoms present. It’s also important to make sure you – if you are low carb – track your basal totals…  if you are in a non-physiologic zone, 20u or more a day for example, and are not overweight/IR, you might have a chronic (typically dental) infection. Bernstein recommends a tooth tapping performance by the dentist, but also a quick home test is to drink a glass of very cold water and look for pain.”

The theory that infection can lead to poor blood sugar control and increased insulin demand also ties in with the our experience with Monica requiring much more insulin during periods when she’s had infections as highlighted in the chart of her insulin levels above.

Heart Rate Variability (HRV) has become popular lately as a way to track your health, stress and exhaustion.  Diminishing HRV scores will often suggest that you’re heading for burnout and will sometimes indicate that you have a sickness coming on.  It seems that tracking your GKI can also provide a similar indication of your overall metabolic health and indicate when you are getting an infection or starting to burn out and get inflamed.


A diet low in processed carbohydrates is not just about reducing blood glucose and obesity.  It also has benefits in reducing infections such as SIBO (small intestinal bacterial overgrowth) and other conditions such as thrush.[4]

A diet high in sugar and processed carbohydrates will feed the ‘bad bacteria’ that will lead to SIBO[5] and other infections such as thrush that are related to too much sugar.

When Monica started to try to increase the fat in her diet her digestion struggled due to SIBO which meant that she was not able to digest the fats.  She worked with our naturopath Elizma to cleanse the SIBO with a vitamin C flush and then re-populate the gut again.

A diet low in sugar and processed carbs is the best thing to starve unwanted bacterial infections.

Belinda Fettke also told me:

I don’t have diabetes, but I was plagued with yeast overgrowth on a high carb diet. Since going low carb there has been not a single sign of it!!

To me, this is the biggest improvement in my health.  Gary told me I should do a TEDx talk in the impact of high carb vs low carb for someone like me who has had such nasty yeast infections in the past. Sounds trivial, but if it is severe it makes you lose concentration, sleep and impacts your sex life. 

Since going low carb I’ve had no thrush. I am surprised that I have also had only minimal symptoms of menopause, despite a family history of marked symptoms and medication.

I think it is SO important to discuss reducing carbohydrates and sugar for all women’s health, not just for women with diabetes. Every woman I speak to has their own health story.

the monthly female hormonal cycle

Insulin sensitivity is also influenced by the monthly female hormonal cycle.

I noticed that a few of the women on the TYPEONEGRIT Facebook group who achieve excellent blood glucose levels were talking about using different basal insulin patterns around their monthly cycle.

It’s surprisingly hard to find much information on the topic.  One useful piece of guidance is from Lois Jovanovic MD who says

Usually, a woman’s insulin requirement goes up 10 to 15% during the last 3 to 5 days of the menstrual cycle due to the hormone progesterone. This is the hormone that prepares the uterus to be full of extra tissue and blood to receive the egg, if it is fertilized. Rising levels of progesterone counteract that action of insulin.[6]

It seems that as progesterone increases through the luteal phase insulin resistance also increases.[7] [8] [9]


For Monica it’s never been that scientific or precise.  There would typically be a time where she wouldn’t be feeling herself, “felt fat” and bloated and would then get frustrated that her blood sugars were all over the place and she’d lost control.  Then all of a sudden everything would be back to normal when her period hit.

On a Diabetes Unscripted podcast Katie Coleman discussed her approach to managing these variations, which includes tracking her monthly cycle with a reminder in her diary at ‘that time of the month’ including the new recommended basal insulin rates.  Katie uses the Kindara app to track her cycle and hence can forecast when she will need to adjust the basal rates on her pump.

After hearing Katie’s story I thought it would be interesting to see if we could learning anything from Monica’s insulin pump data.   While there is a lot of variation in the data in the plot above you can see that there is certainly a regular monthly cycle to the data.  When I looked at the numbers there was definitely one day every four weeks or so when the insulin requirement spiked in the lead up to her period.

The chart below shows the average of the monthly variation in insulin demand (in terms of percentage of average across that month).  The period proper hits one or two days after this insulin demand spike and everything returns to normal in terms of mood and insulin demand.  The lowest insulin demand appears to be around ovulation in the middle of the month.


What this means is that in the four days leading up to the period each month a woman with type 1 diabetes could set her basal insulin to about 10% more than her normal basal insulin rate to manage her blood glucose levels over these four days.

For the rest of the population who do not have type 1 diabetes it’s interesting to see the correlations between higher insulin demand and water retention, mood, food cravings and blood sugar control that are often part and parcel with ‘that time of the month’.

other issues

I know from personal experience (as a male) that when I transition into ketosis with lower insulin levels my overall fluid retention and overall puffiness decrease.   I find myself heading to the toilet more often.  This makes me wonder to what degree oscillating insulin levels (along with estrogen and progesterone) play in the symptoms relating to the monthly female cycle.  Could a diet lower in processed carbohydrates that lowers insulin levels help decrease the mood swings and other fluctuations that come with the monthly hormonal cycle?

While there are anecdotal stories out there about how a paleo or ketogenic diet can lead to Amenorrhoea[10] (i.e. loss of regular menstrual cycle); however many would say that is the body’s response to a lack of calories rather than a well formulated ketogenic diet.  At the same time though there are heaps of anecdotes around the negative symptoms relating to ‘that time of the month’ being reduced on a ketogenic diet.[11] [12]

Perhaps this is another case for finding your optimal dietary glucose load where you can optimise blood glucose levels and possibly moderate hormonal fluctuations without going to the point of starvation where your body decides that survival is more important than reproduction.

it’s not just about the food

Again though, it’s not just about the food.  There are many other factors that will affect your insulin sensitivity such as sleep, genetics, exercise, circadian rhythms and gut bacteria as eloquently discussed in this video by Tommy Wood.


[1] https://optimisingnutrition.wordpress.com/2015/03/22/diabetes-102/

[2] http://diabesity.ejournals.ca/index.php/diabesity/article/view/19

[3] https://vimeo.com/user21838277

[4] http://www.diabetes.co.uk/diabetes-complications/diabetes-and-yeast-infections.html

[5] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099351/

[6] http://diabeticmommy.com/sp-pregnancy-diabetes-bd-faq-answers.html

[7] http://theathleterx.com/progesterone-and-insulin-what-is-the-relationship/

[8] http://www.ncbi.nlm.nih.gov/pubmed/23318859

[9] http://www.ncbi.nlm.nih.gov/pubmed/21768169

[10] https://en.wikipedia.org/wiki/Amenorrhoea

[11] https://zuzkalight.com/nutrition/my-experience-with-ketogenic-diet/

[12] https://www.youtube.com/watch?v=LunZgG8EvUk