Category Archives: carbohydrates

micronutrients at macronutrient extremes

In the previous article, Which Nutrients is YOUR Diet Missing?, we looked at the micronutrients that you might be lacking when following popular dietary strategies such as vegan, Paleo, keto, or zero carb.

As a follow-up, I thought it would be interesting to look at the effect on essential micronutrients if we define our dietary approach in terms of macronutrient extremes such as low carb, high fat, high protein, high carb, or low protein.

Humans tend to think in extreme terms.  It’s easy to follow a binary approach to nutrition, but which, if any, of these are the most useful in terms of maximising the nutrition provided by our diet?

For most of my life, best practice nutrition has been defined by a fear of fat which spawned the low-fat processed food era.

And because protein is necessary for muscle growth, more must be better?

But protein is also insulinogenic, so less protein must be good.  Right?

And then of course there is low carb, which has been popular since the appearance of the Atkins diet appeared in the early 1970s.

atkins.jpg

But then there are a good number of people who still define their diet as being high carb.

Banana-girl-.jpg

All of them seem to be similarly zealous about their all-or-nothing approach.

But are any of these macronutrient extreme approaches beneficial?  And if so, which one leads us to the optimal selection of nutritious foods that will lead to health, happiness, optimal weight, and longevity?

why bother with nutrient density?

The premise of nutrient density is that we want to maximise the quantity of essential micronutrients that we need to support our bodily functions while not overdoing energy intake.

Micronutrient dense foods allow us to obtain adequate nutrition with fewer calories.  Then, with our nutrients accounted for, higher micronutrient density might just lead to higher satiety levels, reduced appetite, reduced food intake and optimal body fat levels.

At the other extreme, if we consume fewer foods with a lower nutrient density, we will likely end up needing to consume more food to obtain the nutrients we need to survive and thrive.  If our appetite drives us to keep on eating until we obtain the nutrients we need, we may end up having to consume too much energy and and end up storing unwanted energy as fat.

macronutrient comparison

In this post, we’ll look at the micronutrients provided by the highest-ranking foods when we sort the eight thousand foods in the USDA database by the most and least fat, protein, and carbs.

Approach % protein % fat % net carbs % fibre
high fat 14% 82% 3% 1%
low net carbs 33% 67% 0% 0%
most nutrient dense 49% 19% 20% 12%
high protein 77% 22% 1% 0%
least nutrient dense 7% 32% 59% 2%
low protein 1% 27% 68% 3%
low fat 8% 1% 84% 7%
high net carbs 3% 2% 92% 2%

This chart shows the macronutrient split for these extreme approaches.

fat

While low carb is still in the lead in terms of internet searches (as shown in the Google Trends data below), the ketogenic diet is becoming pretty popular these days.

The chart below shows the nutrients provided by 2000 calories of the fattiest foods.  Nutrients are expressed in terms of the percentage of the daily recommended intake (DRI), for each nutrient, per 2000 calories (i.e. a typical daily intake).

While we achieve adequate amounts of about half of the essential micronutrients with a therapeutic ketogenic diet, we may need to consider supplementing some of the harder to obtain nutrients such as vitamin C[1], vitamin D, potassium, choline, vitamin K, and magnesium.

Looking at things from the other extreme, a low-fat diet will give you a ton of vitamin C, sodium, manganese, and iron.  However, it will be harder to obtain adequate quantities of the twenty-one essential nutrients, particularly essential fatty acids.

saturated fat

These days, the US Dietary Guidelines have lifted their limit on fat and cholesterol but retained their limitation on saturated fat.  Saturated fat and trans fats remain the two nutrients that we are advised to avoid.

The chart below shows the outcome when we avoid saturated fat.  The top 10% of foods with the lowest saturated fat are lacking (i.e. < 100% DRI) in nineteen essential nutrients.

At the other extreme, foods with the most saturated fat are slightly better with seventeen essential micronutrients lacking.

As discussed in the ‘What about Saturated Fat?’ article, I think saturated fat is neither a concern nor a priority.  Saturated fat a great clean-burning fuel, but there’s no need for us to make up for the last four decades of avoidance by suddenly binging on it.

The chart below shows a comparison of the nutrient density of the quartiles of saturated fat in terms of percentage of energy.  It seems that the foods with moderate levels of saturated fat that are the most nutrient dense.

protein

Once you move past the fear of fat, the next hot topic is optimal protein levels.

The ‘high protein bros’ recommend more protein for muscle growth and satiety, while many in the low carb/keto community target lower protein levels for longevity and ketosis through minimising insulin and mTOR signalling.[2]

As shown in the chart below, when rank foods to minimise protein, we end up with only four essential nutrients meeting the recommended daily guidelines to prevent malnutrition.

At the other extreme, if we prioritise protein we end up with ten nutrients that we fall short of.  The other twenty-six essential nutrients meet the minimum recommended levels.

Not only does protein contain essential amino acids, this analysis indicates that higher protein foods generally come bundled with high amounts of vitamins and minerals, such as vitamin B-12, selenium, vitamin B-6, riboflavin and copper.

It’s one thing to talk about targeting the minimum daily protein that you can get away with if you are looking to preserve muscle in fasting or extreme calorie deprivation during long term weight loss.  It’s a whole different discussion if you’re looking to minimise protein while making up the rest of your daily energy intake with fats or carbs!

carbohydrates

The chart below shows the nutrients we obtain if we maximise energy from non-fibre digestible carbohydrates (i.e. net carbs).  This high carb approach provides adequate amounts of twelve of the essential nutrients, while still being inadequate in twenty-four essential nutrients.

The chart below shows that low carb performs better than high carb, only falling short in sixteen essential micronutrients.

One of the benefits of a low carb approach, is that it often forces the elimination of many processed foods that fill the supermarket shelves to satisfy the demand for low fat foods driven by the admonition by the for the last four decades by the ruling dietary establishment to minimise fat.

A nutrient dense diet contains less non-fibre carb than the typical diet, but some people will do better, at least for a while, on a carb restricted diet.  Another major benefit of low carb is for insulin resistant people when they can lower their blood glucose and insulin levels on a carb restricted diet.  Many people find it easier to lose excess body fat once they have restored their insulin sensitivity.

nutrient density

You’re probably wondering where all these analyses are headed.

With all of these extreme approaches being so deficient in many micronutrients, you must be thinking “I hope there is a happy ending to this story, and soon.”

The good news is that we can manipulate our food selection to maximise micronutrients.  But first, here’s something to scare you even more.

The chart below shows the outcome when we minimise the harder-to-find nutrients.  This low nutrient density approach ends up being adequate in only three essential nutrients: sodium, vitamin C and iron.

The good news is shown in the chart below, which quantifies the nutrients provided by the most nutrient dense foods when we prioritise for the harder to find nutrients.  Alpha linolenic acid (found mainly in nuts and seeds) is hard to come by in adequate quantities, however we can obtain the daily recommended intake of all the other nutrients when we prioritise the harder to find micronutrients.

comparison of nutrients adequate

It’s a little hard to present and digest this analysis clearly.  There is no agreed protocol to compare the nutrient density foods.  So I’ve tried to summarise it in a number of different ways to allow you to draw your own conclusions.

Firstly, the chart below shows the number of nutrients that each macronutrient extreme is adequate in, from the most nutrient dense at the top to the least nutrient dense at the bottom.

The chart below shows a stacked bar chart of the various nutrients in terms of % DRI.  It’s like we have added up all the above charts for each nutrient and stacked them on top of each other.  This chart demonstrates that there is a is a massive difference between the most nutrient dense and least nutrient dense approaches.  If you’re foods that have a lower nutrient density you might just be hungrier compared to if you are eating the same number of calorie of the most nutrient dense foods which will much more effectively provide you with your essential micronutrients.

But  we needn’t be too concerned about the micronutrients that are easy to obtain.  What we really care about is the nutrients that are harder to obtain.  The chart below shows the sum of the eighteen nutrients that are harder to obtain for each extreme approach.

application

It seems that thinking in terms of macronutrient extremes has some usefulness.  However, focusing on micronutrient density seems to provide an order of magnitude improvement in the level of actual nutrients provided by our food.

Maybe it’s time for a new trend?

The ‘problem’ with nutrient dense foods is that that they are so lean and contain so much fibre that it can be hard to consume enough calories to maintain weight.  You’ll just be too full!

If you are insulin sensitive and not looking to lose weight, then you could consider adding some more ‘Paleo friendly’ carbs such as beets, squash, yams, and sweet potatoes, and/or some fattier cuts of meat to fuel your activity.  If you are insulin resistant, you may need to add some fattier (but still relatively nutrient dense) foods to maintain your weight while also keeping your blood glucose and insulin levels in check.

Perhaps micronutrient density is the most important parameter to pursue in our diet.  Then with that cornerstone in place we can personalise our nutritional approach to suit our goals (e.g. weight loss, ketosis, athletic performance or healthy maintenance).

The various food lists in the table below are designed with micronutrient density as the main priority, but also consider insulin load and energy density to suit different goals.

approach average glucose waist : height
(mg/dL) (mmol/L)
therapeutic ketosis > 140 > 7.8
diabetes and nutritional ketosis 108 to 140 6.0 to 7.8
weight loss (insulin resistant) 100 to 108 5.4 to 6.0 > 0.5
weight loss (insulin sensitive) < 97 < 5.4 > 0.5
bulking < 97 < 5.4 < 0.5
nutrient dense maintenance < 97 < 5.4 < 0.5

personalisation

In the end, no one sticks to an optimal list of foods that perfectly balances their diet 100% of the time.

I’ve been working on a system that will give you feedback on YOUR current diet, identify which nutrients you are currently lacking, and which supplements or real whole foods you may need to add or subtract to optimise your nutrition.  Most people don’t eat perfectly all the time, but we could all use some help moving forward towards optimal.

Check out the Nutrient Optimiser page for more details.

 

notes

[1] There is a strong case for the idea that the DRI for vitamin C could be relaxed for a diet with lower glucose.  See http://breaknutrition.com/ketogenic-diet-vitamin-c-101/ and http://orthomolecular.org/library/jom/2005/pdf/2005-v20n03-p179.pdf

[2] Check out this video by Ron Rosedale for an overview of the topic of protein, mTOR signalling and longevity.  https://www.youtube.com/watch?v=xtZ0LqUBySQ

energy density, food hyper-palatability and reverse engineering optimal foraging theory

I’m looking forward to Robb Wolf’s new book Wired to Eat in which he talks about the dilemma of optimal foraging theory (OFT) and how it’s a miracle in our modern environment that even more of us aren’t fat, sick and nearly dead.[1]

image26

[yes, I may be a Robb Wolf fan boy.]

But what is  optimal foraging theory[2]?   In essence it is the concept that we’re programmed to hunt and gather and ingest as much energy us we can with the least amount of energy expenditure or order to maximise survival of the species.

In engineering or economics this is akin to a cost : benefit analysis.  Essentially we want maximum benefit for minimum investment.

image13

In a hunter gatherer / paleo / evolutionary context this would mean that we would make an investment (i.e. effort / time / hassle that we could have otherwise spent having fun, procreating or looking after our family) to travel to new places where food was plentiful and easier to obtain.

In these new areas we could spend as little time as possible hunting and gathering and more time relaxing.  Once the food became scarce again we would move on to find another land of plenty.

The people who were good at obtaining the maximum amount of food with the minimum amount of effort survived and thrived and populated the world, and thus became our ancestors.  Those that didnt’ didn’t.

So you can see how the OFT paradigm would be well imprinted on our psyche.

OFT in the wild

In the wild, OFT means that native hunter gatherers would have gone bananas for bananas when they were available…

image28

… gone to extraordinary lengths to obtain energy dense honey …

image16

… and eaten the fattiest cuts of meat and offal, giving the muscle meat to the dogs.

image02

OFT in captivity

But what happens when we translate OFT into a modern context?

image09

Until recently we have never had the situation where nutrition and energy could be separated.

In nature, if something tastes good it is generally good for you.

Our ancestors, at least the ones that survived, grew to understand that as a general rule:

 sweet = good = energy to survive winter

But now we have entered a brave new world.

image19

These days we have are surrounded by energy dense hyperpalatable foods that are designed to taste good without providing substantial levels of nutrients.

image05

When these foods are available our primal programming leaves us defenceless.

Our willpower or our calorie counting apps are no match for engineered foods with an optimised bliss point.

image14

These days diabetes is becoming a bigger problem than starvation in the developing world due to a lack of nutritional value in the the foods they are eating.[3]

The recent industrialisation of the world food system has resulted in a nutritional transition in which developing nations are simultaneously experiencing undernutrition and obesity.

In addition, an abundance of inexpensive, high-density foods laden with sugar and fats is available to a population that expends little energy to obtain such large numbers of calories.

Furthermore, the abundant variety of ultra processed foods overrides the sensory-specific satiety mechanism, thus leading to overconsumption.”[4]

what happens when we go low fat?

So if the problem is simply that we eat too many calories, one solution is to reduce the energy density of our food by avoiding fat, which is the most energy dense of the macronutrients.

Sounds logical, right?

The research into the satiety index demonstrates that there is some basis to the concept that we feel more full with lower energy density, high fibre, high protein foods.[5] [6]   The chart below shows how hungry people report being in the two hours after being fed 1000kJ of different foods (see the low energy density high nutrient density foods for weight loss article for more on this complex and intriguing topic).

image21

However the problem comes when we focus on reducing fat (along with perhaps reduced cost, increased shelf life and palatability combined with an attempt to reach that optimal bliss point[7]), we end up with cheap manufactured food like products that have little nutritional value.

image10

Grain subsidies were brought in to establish and promote cheap ways to feed people to prevent starvation.[8]  It seems now they’ve achieved that goal.[9]

image07

Maybe a little too well.

image01

The foods lowest in fat however are not necessarily the most nutrient dense.     Nutritional excellence and macronutrients are are not necessarily related.

In his blog post Overeating and Brain Evolution: The Omnivore’s REAL Dilemma Robb Wolf says:

I am pretty burned out on the protein, carbs, fat shindig. I’m starting to think that framework creates more confusion than answers.

Thinking about optimum foraging theory, palate novelty and a few related topics will (hopefully) provide a much better framework for folks to affect positive change. 

The chart below shows a comparison of the micronutrients provided by the least nutrient dense 10% of foods versus the most nutrient dense foods compared to the average of all foods available in the USDA foods database.

image18

The quantity of essential nutrients you can get with the same amount of energy is massive!  If eating is about obtaining adequate nutrients then the quality of our food, not just macronutrients or calories matters greatly!

Another problem with simply avoiding fat is that the foods lowest in fat are also the most insulinogenic so we’re left with foods that don’t satiate us with nutrients and also raise our insulin levels.  The chart below shows that the least nutrient dense food are also the most insulinogenic.


what happens when we go low carb?

So the obvious thing to do is to rebel and eliminate all carbohydrates because low fat was such a failure.  Right?

image20

So we swing to the other extreme and avoid all carbohydrates and enjoy fat ad libitum to make up for lost time.

The problem again is that at the other extreme of the macronutrient pendulum we may find that we have limited nutrients.

The chart below shows a comparison of the nutrient density of different dietary approaches showing that a super high fat therapeutic ketogenic approach may not be ideal for everyone, at least in terms of nutrient density.  High fat foods are not always the most nutrient dense and can also, just like low fat foods, be engineered to be hyperpalatable to help us to eat more of them.

image24

The chart below shows the relationship (or lack thereof) between the percentage of fat in our food and the nutrient density.   Simply avoiding or binging on fat does not ensure we are optimising our nutrition.

image12

While many people find that their appetite is normalised whey they reduce the insulin load of their diet high fat foods are more energy dense so it can be easy to overdo the high fat dairy and nuts if you’re one of the unlucky people whose appetite doesn’t disappear.

image08

what happens when we go paleo?

So if ‘paleo foods’ worked so well for paleo peeps then maybe we should retreat back there?  Back to the plantains, the honey and the fattiest cuts of meat?

image27

Well, maybe.  Maybe not.

image06

For some people ‘going paleo’ works really well.  Particularly if you’re really active.

Nutrient dense, energy dense whole foods work really well if you’re also going to the CrossFit Box to hang out with your best buds five times a week.

image11

But for the rest of us that aren’t insanely active, then maybe simply ‘going paleo’ is not the best option…

image25

… particularly if we start tucking into the energy dense ‘paleo comfort foods’.

image03

If we’re not so active, then intentionally limiting our exposure to highly energy dense hyperpalatable foods can be a useful way to manage our OFT programming.

enter nutrient density

A lot of people find that nutrient dense non-starchy veggies, or even simply going “plant based”, works really well, particularly if you have some excess body fat (and maybe even stored protein) that you want to contribute to your daily energy expenditure.

image15

Limiting ourselves to the most nutrient dense foods (in terms of nutrients per calorie) enables us to sidestep the trap of modern foods which have separated nutrients and energy.  Nutrient dense foods also boost our mitochondrial function, and fuel the fat burning Krebs cycle so we can be less dependent on a sugar hit for energy (Cori cycle).

Limiting yourself to nutrient dense foods (i.e. nutrients per calorie) is a great way to reverse engineer optimal foraging theory.

image04

If your problem is that energy dense low nutrient density hyperpalatable foods are just too easy to overeat, then actively constraining your foods to those that have the highest nutrients per calorie could help manage the negative effects of OFT that are engrained in our system by imposing an external constraint.

image22

But if you’re a lean Ironman triathlete these foods are probably not going to get you through.  You will need more energy than you can get from nutrient dense spinach and broccoli.

optimal rehabilitation plan?

So while there is no one size fits all solution, it seems that we have some useful principles that we can use to shortlist our food selection.

  1. We are hardwired to get the maximum amount of energy with the least amount of effort (i.e. optimal foraging theory).
  2. Commercialised manufactured foods have separated nutrients from food and made it very easy to obtain a lot of energy with a small investment.
  3. Eliminating fat can leave us with cheap hyperpalatable grain-based fat free highly insulinogenic foods that will leave us with spiralling insulin and blood glucose levels.
  4. Eating nutrient dense whole foods is a great discipline, but we still need to tailor our energy density to our situation (i.e. weight loss vs athlete).

the solution

So I think we have three useful quantitative parameters with which to optimise our food choices to suit our current situation:

  1. insulin load (which helps as to normalise our blood glucose levels),
  2. nutrient density (which helps us make sure we are getting the most nutrients per calorie possible), and
  3. energy density (helps us to manage the impulses of OFT in the modern world).

image30

I have used a multi criteria analysis to rank the foods for each goal.  The chart below shows the weightings used for each approach.

image23

The lists of optimal foods below have been developed to help you manage your primal impulses.  The table below contains links to seperate blog posts and printable .pdfs for a range of dietary approaches that may be of interest depending on your goals and situation.

dietary approach printable .pdf
weight loss (insulin sensitive) download
autoimmune (nutrient dense) download
alkaline foods download
nutrient dense bulking download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
autoimmune (diabetes friendly) download
zero carb download
diabetes and nutritional ketosis download
vegan (nutrient dense) download
vegan (diabetic friendly) download
therapeutic ketosis download
avoid download

If you’re not sure which approach is right for you and whether you are insulin resistant this survey may help you identify your optimal dietary approach.

survey

I hope this helps.

Good luck out there!

references

[1] http://ketosummit.com/

[2] https://en.wikipedia.org/wiki/Optimal_foraging_theory

[3] http://www.hoajonline.com/obesity/2052-5966/2/2

[4] https://www.ncbi.nlm.nih.gov/pubmed/24564590

[5] http://nutritiondata.self.com/topics/fullness-factor

[6] https://www.ncbi.nlm.nih.gov/pubmed/7498104

[7] https://www.nextnature.net/2013/02/how-food-scientists-engineer-the-bliss-point-in-junk-food/

[8] https://en.wikipedia.org/wiki/Agricultural_subsidy

[9] http://blog.diabeticcare.com/diabetes-obesity-growth-trend-u-s/

breakfast of champions

My Facebook feed has been flooded lately with stories about Tour de France cyclists going low carb.[1]

image05[1]

Or is it high protein?[2]

image10[1]

Whatever is going on, it seems helps them run well too![3]

image09[1]

While I’m not sure you can say that these elite cyclists have eschewed all carbohydrate-containing foods,  the trend away from processed carbs to whole foods is intriguing.

So if they’re going low carb does it mean they’re now butter, cream, MCT oil after starting the day with BPC?

Dr. James Morton, head of nutrition at Team Sky and an associate professor in the Faculty of Science at Liverpool John Moores University explains:[4] [5] [6] [7] [8]

We promote a natural approach to food.  Our riders eat food that grows in the ground or on a tree and protein from natural sources.

They need energy, but they also have to stay lean and healthy with a strong immune system. A natural diet is the best way to achieve this.

Fat is important for everything from energy release and muscle health to immunity, but by eating the right food the fat takes care of itself.  The riders eat eggs, milk, Greek yogurt, nuts, olive oil, avocados and some red meat for a natural mix of saturated and unsaturated fats.”

To achieve optimal weight Dr Morton asks the riders to “periodise” their carb intake by eating more when they train hard and cutting back when they’re less active.

They routinely train in the morning after eating a protein-rich omelette, instead of carbohydrate-dense bread, to encourage their bodies to burn fat for fuel.[9]

image03[1]

So how does low carb real food thing work?

According to Dr Terry Wahls it seems that nutrient density is a key part of maximising energy output.

To produce ATP efficiently, the mitochondria need particular things.  Glucose or ketone bodies from fat and oxygen are primary.  

Your mitochondria can limp along, producing a few ATP on only these three things, but to really do the job right and produce the most ATP, your mitochondria also need thiamine (vitamin B1), riboflavin (vitamin B2), niacinamide (vitamin B3), pantothenic acid (vitamin B5), minerals (especially sulfur, zinc, magnesium, iron and manganese) and antioxidants.  Mitochondria also need plenty of L-carnitine, alpha-lipoic acid, creatine, and ubiquinone (also called coenzyme Q) for peak efficiency.  

If you don’t get all these nutrients or if you are exposed to too many toxins, your ATP production will become less efficient, which leads to two problems:

Your body will produce less energy so they may not be able to do everything they need to do.

Your cells will generate more waste than necessary in the form of free radicals.

Without the right nutrient sources to fuel the ATP production in the mitochondria – which in turn produce energy for the cellular processes required to sustain life – your mitochondria can become starved.  The cells then can’t do their job as effectively.[10] 

So let’s look at the macro and micronutrient analysis of Chris Froome’s “rest day breakfast” (pictured above).   The analysis indicates that it does very well in both the vitamins and minerals score as well as the amino acids score.

image12[1]

If we throw in some spinach Froomey would improve the vitamin and mineral score of his breakfast even further.  The addition of spinach increases the nutrient balance score from 57 to 77 while the amino acid score stays high.

image14[1]

Froome’s wife says eating more protein has been one of the keys to losing weight and building muscle leading up to the tour.[11]  Getting a quarter of your calories from protein is more than the 16% most people consume, however with 65% of the energy coming from fat you could also call this meal low carb, high fat, or even “ketogenic” depending on which camp you’re in.

image01[1]

This simple but effective meal would be a pretty good option for just about anyone.  Froome’s breakfast ranks well regardless of your goals.  Based on the ranking system of meals for different goals it comes in at:

  • #10 (with spinach) and #31 (without spinach) out of 245 meals analysed for the low carb diabetes ranking,
  • #18 and 52 on the therapeutic ketosis ranking, and
  • #26 and 64 on the overall nutrient density ranking.

image00[1]

It seems it’s not just the low carbers, “ketonians”[12] and people battling diabetes who are training their bodies to burn fat more efficiently.  Maximising your ability to burn fat is critical even if you are extremely metabolically healthy.

The chart below shows comparison of the fat oxidation rate of well trained athletes (WT) versus recreationally (RT) athletes (who are not necessarily following a low carb diet).[13]  The well trained athletes are clearly oxidising more fat, which enables them to put out a lot more power (measured in terms of their VO2max).   It seems that you ability to efficiently burn fat for fuel it a key component of what sets the elite apart from the amateurs whether you call yourself vegan, ketogenic or a fruitarian.[14]

image07[1]

While carbohydrates help to produce maximal explosive power, it seems that the glucose turbocharger works best when it sits on a big power fat fueled motor.  According to Peter Defty (who spent the last couple of years helping 2016 Tour de France second place getter Romain Bardet refine his ability as a fat adapted athlete using his Optimised Fat Metabolism protocol), fat can yield more energy more efficiently with less oxidative stress which requires less recovery time.[15]

Dr Morton also understand the importance of keeping carbohydrates low to maximise mitochondrial biogenesis and to access fat stores.  If you want to learn more about his thinking on the use of diet to drive mitochondrial biogenesis you might be interested in checking out his array of published papers on the topic.[16] [17] [18] [19] [20] [21] [22]   On the topic of carbohydrate intake Morton says:

Amateur riders are taught the importance of carbohydrates for training and racing, perhaps too much actually.

From our research at Liverpool John Moores University, we now know that deliberately restricting carbs around carefully chosen training sessions can actually enhance training adaptations.

But then of course we must ensure higher carbohydrate intakes for key training sessions and hard stages in racing.

I believe this concept of periodising daily carbohydrate intake is the most exciting part of sports nutrition in the last decade and our challenge now is to address how best we do this practically.

Essentially, exercising your mitochondria in a low insulin and low glucose state forces your body to adapt to using fat for fuel and to use glucose and oxygen efficiently and effectively.[23] [24]

image06[1]

Not only is this useful for endurance athletes and people battling diabetes, training your body to use fat and oxygen more effectively is also claimed to be important to minimise anaerobic fermentation which is said to increase your risk of cancer.[25] [26] [27]

Many of us struggle trying to cope in an environment of excess energy from low nutrient density highly insulinogenic food.  If we can’t obtain the necessary nutrients from our food to efficiently produce energy our bodies seek out more and more food in the hope of finding the required nutrients and enough energy to feel OK.

image13[1]

Our bodies do their best to use the energy that we give them, but they are working overtime to pump out insulin to store the excess energy that is not used.  Over time our bodies adapt by becoming resistant to insulin in order to stop the excess energy being stored in our liver, pancreas and eyes when our fat stores on our muscles and belly can’t take any more.[28]  Then to overcome the insulin resistance the body has to pump out more insulin which makes even less of the energy we eat available for use.

image04[1]

When we call on our mitochondria to produce intensive bursts of energy with minimal fuel (i.e. fasting) or glucose (i.e. low carb) we force our bodies to more efficiently the limited carbohydrate.  Suddenly our bodies become insulin sensitive.

Recent studies indicate that people who are fat adapted are able to mobilise higher rates of fat at higher excercise intensities.[29]

image08[2]

With a higher reliance on fat they are able to conserve the precious glucose for explosive efforts.

image02[1]

Then, when they really need the power they have both fuel tanks available to cross the  line first… and second!

image11[1]

 

references

[1] http://realmealrevolution.com/real-thinking/great-news-for-lchf-first-and-second-place-riders-of-the-tour-de-france-are

[2] http://www.businessinsider.com.au/chris-froome-weight-loss-tour-de-france-2016-7?r=US&IR=T

[3] https://www.youtube.com/watch?v=UPqxUA70ulo

[4] http://www.telegraph.co.uk/men/recreational-cycling/how-to-eat-like-a-tour-de-france-cyclist/

[5] http://www.teamsky.com/teamsky/home/article/68342#CpWWiwr2TyE0EA2P.97

[6] https://www.ljmu.ac.uk/about-us/staff-profiles/faculty-of-science/sport-and-exercise-sciences/james-morton

[7] http://www.ncbi.nlm.nih.gov/pubmed/23364526

[8] http://www.ncbi.nlm.nih.gov/pubmed/23263742

[9] http://realmealrevolution.com/real-thinking/great-news-for-lchf-first-and-second-place-riders-of-the-tour-de-france-are

[10] https://www.amazon.com/Wahls-Protocol-Autoimmune-Conditions-Principles/dp/1583335544

[11]

[12] http://ketotalk.com/2016/04/19-inflammatory-keto-foods-build-muscle-on-moderate-protein-baby-boomer-ketonians/

[13] http://m.bmjopensem.bmj.com/content/1/1/e000047.full

[14] http://www.30bananasaday.com/profile/durianrider

[15] http://www.vespapower.com/mighty-mitochondria/

[16] https://www.ljmu.ac.uk/about-us/staff-profiles/faculty-of-science/sport-and-exercise-sciences/james-morton

[17] http://ajpregu.physiology.org/content/304/6/R450

[18] http://www.ncbi.nlm.nih.gov/pubmed/23263742

[19] http://www.ncbi.nlm.nih.gov/pubmed/19265068

[20] http://journals.lww.com/acsm-msse/pages/articleviewer.aspx?year=9000&issue=00000&article=97464&type=abstract

[21] http://www.sciencedirect.com/science/article/pii/S0891584916000307

[22] http://www.tandfonline.com/doi/abs/10.1080/17461391.2014.920926

[23] https://www.fightaging.org/archives/2011/04/calorie-restriction-increases-mitochondrial-biogenesis/

[24] http://www.marksdailyapple.com/managing-your-mitochondria/#axzz4G2D39DgB

[25] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493566/

[26] https://www.amazon.com/Tripping-Over-Truth-Metabolic-Illuminates/dp/1500600318

[27] https://www.youtube.com/watch?v=PuG5XZSR4vs

[28] http://www.ncbi.nlm.nih.gov/pubmed/25515001

[29] http://www.vespapower.com/the-emerging-science-on-fat-adaptation/

nutrient dense insulinogenic foods for athletes and bulking

As well as identifying nutrient dense diabetic friendly foods, we can use the food insulin index to highlight more insulinogenic nutrient dense higher energy density foods for use by athletes or people wanting gain weight.

This article highlights more insulinogenic nutrient dense foods that could be used by metabolically healthy people to strategically “carb up” before events, to intentionally trigger insulin spikes (e.g. Carb Back-Loading, Alt Shift Diet or the targeted ketogenic diet) or to maximise growth for people who are underweight while still maintaining high levels of nutrition.

insulin load, a refresher

Many people with diabetes will try to reduce the insulin load of their diet to normalise blood glucose levels.  It’s the non-fibre carbohydrates, and to a lesser extent protein, that drive insulin and blood glucose, particularly for someone who is insulin resistant.

image02

Managing the insulin load of your diet is an effective way to get off the blood glucose roller coaster and stabilise blood glucose levels.  We can calculate the insulin load of our diet based on the carbohydrates, fibre and protein using the formula shown below.

image00

We can also calculate the percentage of insulinogenic calories to identify the foods that will affect our blood glucose levels the least, or the most.

image01

but why would you want to spike your glucose levels?

Much of the nutrition and diabetes world is focused on helping people who are struggling with insulin resistance and trying to normalise blood glucose.  However, there are others who are blessed to be metabolically healthy who may want to strategically refill their glycogen tanks or raise their insulin levels.

  • Some follow a targeted ketogenic diet and strategically replenish glucose around workouts by eating higher carbohydrate foods.
  • Some bodybuilders use a cyclical ketogenic diet where they deplete glucose and then replenish glucose periodically.
  • Some fat adapted endurance athletes will look to ‘carb up’ before an event so that they have both glucose and fat based fuel sources (a.k.a. train low, race high).

  • Others find success with dietary approaches such as the AltShift Diet, Carb Back-Loading which alternating periods of extreme high and low carb dietary approaches (not always with the most nutritious high carb foods).

the mission…

Dr Tommy Wood approached me to design a high insulin load and a low insulin load diet regimen that he could try for a month of each to see how his body responded. The constraint was that both the high and low insulin load foods would have to be nutrient dense whole foods so as to be a fair comparison of the effect of insulin load.

image03

The foods listed below represent the top 10% of the USDA food database prioritised for higher insulin load, higher nutrient density and higher energy density.  In terms of macronutrients they come out at 36% protein, 15% fat and 44% net carbohydrates.

While these foods might not be ideal for someone with diabetes they actually look like a pretty healthy list of foods compared to the “food like products” that you’d find in the isles of the supermarket.

This chart shows the nutrients provided by the top 10% of the foods using this ranking compared to the average of all foods in the USDA foods database.

2017-02-19 (7).png

Also included in the tables below are the nutrient density score, percentage of insulinogenic calories, insulin load, energy density and the multicriteria analysis score score (MCA) that combines all these factors.

vegetables

image19

food ND insulin load (g/100g) calories/100g MCA
watercress 19 2 11 1.2
seaweed (wakame) 13 11 45 1.0
shiitake mushrooms 5 72 296 0.9
spinach 17 4 23 0.9
brown mushrooms 11 5 22 0.7
asparagus 15 3 22 0.7
chard 14 3 19 0.7
seaweed (kelp) 9 10 43 0.7
yeast extract spread 8 27 185 0.6
white mushroom 11 5 22 0.6
spirulina 10 6 26 0.6
mung beans 9 4 19 0.6
Chinese cabbage 12 2 12 0.5
celery flakes 4 42 319 0.5
portabella mushrooms 11 5 29 0.5
broccoli 11 5 35 0.4
parsley 12 5 36 0.4
lettuce 12 2 15 0.4
radicchio 8 4 23 0.4
shiitake mushroom 9 7 39 0.4
peas 7 7 42 0.4
dandelion greens 9 7 45 0.3
endive 15 1 17 0.3
okra 10 3 22 0.3
pumpkin 6 4 20 0.3
bamboo shoots 8 5 27 0.3
beet greens 12 2 22 0.3
snap beans 8 3 15 0.3
zucchini 11 2 17 0.3

animal products

7450703_orig

food ND insulin load (g/100g) calories/100g MCA
ham (lean only) 11 17 113 0.7
veal liver 9 26 192 0.7
beef liver 9 25 175 0.7
lamb liver 11 20 168 0.7
lamb kidney 11 15 112 0.6
chicken breast 8 22 148 0.5
pork liver 7 23 165 0.5
chicken liver 9 20 172 0.5
pork chop 7 23 172 0.5
veal 6 24 151 0.5
beef kidney 8 20 157 0.5
lean beef 7 23 149 0.5
leg ham 7 22 165 0.5
turkey liver 8 21 189 0.5
pork shoulder 6 22 162 0.4
ground beef 6 20 144 0.4
sirloin steak 6 24 177 0.4
ground pork 6 25 185 0.4

seafood

food ND insulin load (g/100g) calories/100g MCA
cod 14 48 290 1.5
crab 15 14 83 1.1
lobster 14 15 89 1.1
crayfish 12 13 82 0.9
shrimp 11 19 119 0.9
pollock 11 18 111 0.8
octopus 9 28 164 0.8
halibut 11 17 111 0.8
fish roe 13 18 143 0.8
haddock 10 19 116 0.8
white fish 10 18 108 0.8
clam 9 25 142 0.8
scallop 8 22 111 0.7
rockfish 10 17 109 0.7
salmon 11 20 156 0.7
whiting 9 18 116 0.7
perch 10 14 96 0.7
oyster 11 14 102 0.7
flounder 11 12 86 0.6
anchovy 9 22 210 0.6
trout 10 18 168 0.6
caviar 10 23 264 0.6
sturgeon 10 16 135 0.5
tuna 6 23 184 0.3
orange roughy 4 17 105 0.3
sardine 7 19 208 0.3

legumes

image11

food ND insulin load (g/100g) calories/100g MCA
cowpeas 2 68 336 0.8
black beans 2 63 341 0.6
soybeans 3 49 446 0.6
pinto beans 1 64 347 0.6
kidney beans 1 63 337 0.6
broad beans 2 54 341 0.5
peas 0 57 352 0.4

grains

image08

food ND insulin load (g/100g) calories/100g MCA
oat bran 6 65 246 0.7
baker’s yeast 10 16 105 0.5
baking powder 2 45 97 0.4
wheat bran 8 34 216 0.4
rye flour 0 58 325 0.4
quinoa 1 22 120 0.1

dairy

image08

 

food ND insulin load (g/100g) calories/100g MCA
whey powder 10 82 339 1.6
cream cheese (low fat) 12 19 105 1.0
cottage cheese (low fat) 6 14 72 0.5
parmesan cheese 3 35 420 0.4
cottage cheese (low fat) 7 13 81 0.4
cheddar (non-fat) 6 20 173 0.3
mozzarella 4 26 304 0.3
kefir 6 7 41 0.3
gruyere cheese 3 23 413 0.3
low fat milk 6 8 56 0.2
Greek yogurt (low fat) 5 11 73 0.2
Swiss cheese 3 22 393 0.2
gouda cheese 3 21 356 0.2
cheddar cheese 3 20 410 0.2
egg yolk 6 12 275 0.2
edam cheese 3 21 357 0.1

other dietary approaches

The table below contains links to separate blog posts and printable .pdfs detailing optimal foods for a range of dietary approaches (sorted from most to least nutrient dense) that may be of interest depending on your situation and goals.   You can print them out to stick to your fridge or take on your next shopping expedition for some inspiration.

dietary approach printable .pdf
weight loss (insulin sensitive) download
autoimmune (nutrient dense) download
alkaline foods download
nutrient dense bulking download
nutrient dense (maintenance) download
weight loss (insulin resistant) download
autoimmune (diabetes friendly) download
zero carb download
diabetes and nutritional ketosis download
vegan (nutrient dense) download
vegan (diabetic friendly) download
therapeutic ketosis download
avoid download

If you’re not sure which approach is right for you and whether you are insulin resistant, this survey may help identify the optimal dietary approach for you.

image02

the most nutrient dense foods for different goals

While a lot of attention is often given to macronutrient balance, quantifying the vitamin and mineral sufficiency of our diet is typically done by guesswork.  This article lists the foods that are highest in amino acids, vitamins, minerals or omega 3 refined to suit people with different goals (e.g. diabetes management, weight loss, therapeutic ketosis or a metabolically healthy athlete).

I’ve spent some time lately analysing people’s food diaries, noting nutritional deficiencies, and suggesting specific foods to fill nutritional gaps while still being mindful of the capacity of the individual to process glucose based on their individual insulin sensitivity and pancreatic function.  The output from nutritiondata.self.com below shows an example of the nutrient balance and protein quality analysis.

image001

In this instance the meal has plenty of protein but is lacking in vitamins and minerals, which is not uncommon for people who are trying to reduce their carbohydrates to minimise their blood glucose levels.

The pink spokes of the nutrient balance plot on the left shows the vitamins while the white shows the minerals.  On the right hand side the individual spokes of the protein quality score represent individual amino acids.

A score of 100 means that you will meet the recommended daily intake (RDI) for all the nutrients with 1000 calories, so a score of 40 in the nutrient balance as shown is less than desirable if we are trying to maximise nutrition. [1]

I thought it would be useful to develop a ‘shortlist’ of foods to enable people to find foods with high levels of particular nutrients to fill in possible deficiencies while being mindful of their ability to deal with glucose.

essential nutrients

The list of essential nutrients below is the basis of the nutrient density scoring system used in the Your Personal Food Ranking System article, with equal weighting given to each of these essential nutrients. [2]

The only essential nutrients not included in this list are the omega-6 fatty acids which we typically get more than enough of in our western diet.  [3]

essential fatty acids

  1. alpha-Linolenic acid (omega-3) (18:3)
  2. docosahexaenoic acid (omega-3) (22:6)

amino acids

  1. cysteine
  2. isoleucine
  3. leucine
  4. lysine
  5. phenylalanine
  6. threonine
  7. tryptophan
  8. tyrosine
  9. valine
  10. methionine
  11. histidine

vitamins

  1. choline
  2. thiamine
  3. riboflavin
  4. niacin
  5. pantothenic acid
  6. vitamin A
  7. vitamin B12
  8. vitamin B6
  9. vitamin C
  10. vitamin D
  11. vitamin E
  12. vitamin K

minerals

  1. calcium
  2. copper
  3. iron
  4. magnesium
  5. manganese
  6. phosphorus
  7. potassium
  8. selenium
  9. sodium
  10. zinc

the lists

Previously I’ve developed short lists of nutrient dense foods also based on their insulin load or other parameters (see optimal foods lists).

But what if we want to get more specific and find the optimal foods for a diabetic who is getting adequate protein but needs more vitamins or minerals?  What about someone whose goal is nutritional ketosis who is trying to maximise their omega-3 fats to nurture their brain?

To this end the next step is to develop more specific lists of nutrient dense foods in specific categories (i.e. omega-3, vitamins, minerals and amino acids) which can be tailored to individual carbohydrate tolerance levels.

I’ve exported the top foods using each of the ranking criteria from the 8000 foods in the database.  You can click on the ‘download’ link to open the .pdf to see the full list.  Each .pdf file shows the relative weighting of the various components of the multi criteria ranking system.  The top five are highlighted in the following discussion below.

It’s worth noting that the ranking system is based on both nutrient density / calorie, and calorie density / weight.  Considering nutrient density / calorie will preference low calorie density foods such as leafy veggies and herbs.  Considering calorie density / weight tends to prioritise animal foods.  Evenly balancing both parameters seems to be a logical approach.

You’re probably not going to get your daily energy requirements from basil and parsley so you’ll realistically need to move down the list to the more calorie dense foods once you’ve eaten as much of the green leafy veggies as you can.  The same also applies if some foods listed are not available in your area.

weighting all nutrients omega-3 vitamins minerals aminos
no insulin index contribution download download download download download
athlete download download download download download
weight loss download download download download download
diabetes and nutritional ketosis download download download download download
therapeutic ketosis download download download download download

all nutrients

This section looks at the most nutrient dense foods across all of the essential nutrients shown above.  Consider including the weighting tables.

no insulin index contribution

If we do not consider insulin load then we get the following highly nutrient dense foods:

  1. liver,
  2. cod,
  3. parsley,
  4. white fish, and
  5. spirulina / seaweed

Liver tops the list.  This aligns with Matt Lalonde’s analysis of nutrient density as detailed in his AHS 2012 presentation.

It’s likely the nutrient density of cod, which is second on the list of the most nutrient dense foods, is the reason that Dwayne Johnson (a.k.a. The Rock) eats an inordinate amount of it. [4]

image003

It certainly seems to be working for him.

Duane Johnson 2 - Copy

athlete and metabolically healthy

If you have no issue with obesity or insulin resistance then you’ll likely want to simply select foods at the top of the nutrient dense foods list.  However most people will also benefit from considering their insulin load along with fibre and calorie density.   Most of us mere mortals aren’t as active or metabolically healthy as Dwayne.

When we consider insulin load we get the following foods at the top of the list:

  1. basil,
  2. parsley,
  3. spearmint,
  4. paprika, and
  5. liver

We grow basil in a little herb garden and use it to make a pesto with pine nuts, parmesan and olive oil.  It’s so delicious!   (And when I say ‘we’ I mean my amazing wife Monica.)

Aaron Tait Photography

You’ll note that spices and herbs typically rank highly in a lot of these lists.  The good news is that they typically have a very low calorie density, high nutrient density and are high in fibre.

The challenge again is that it’s hard to get all your energy needs from herbs alone, so after you’ve included as many herbs and green leafy veggies as you can fit in, go further down the list to select other more calorie dense foods to meet your required intake.

weight loss

If we reduce calorie density, increase fibre and pay some attention to insulin load for the weight loss scenario we get the following foods:

  1. wax gourd (winter melon),
  2. basil,
  3. endive,
  4. chicory, and
  5. dock

If you’re wondering what a winter melon looks like (like I was), here it is.

image008

The winter melon does well in this ranking because it is very fibrous, has a very low calorie density and a very low 8% insulinogenic calories which means that it has very few digestible carbohydrates.

Again, basil does pretty well along with a range of nutrient dense herbs.  Basil is more nutrient dense than the winter melon while still having a very low calorie density.

diabetes and nutritional ketosis

If we factor carbohydrate tolerance into the mix and want to keep the insulin load of our diet low we get the following foods:

  1. wax gourd (winter melon),
  2. chia seeds,
  3. flax seeds,
  4. avocado, and
  5. olives

Wax gourd does well again due to its high fibre and low calorie density; however if you’re looking for excellent nutrient density as well, then chia seeds and flax seeds may be better choices.  When it comes to flax seeds are best eaten ‘fresh ground’ (in a bullet grinder) for digestibility and also freshness and that over consumption may be problematic when it comes to increasing estrogens.

image010

therapeutic ketosis

Then if we’re looking for the most nutrient dense foods that will support therapeutic ketosis we get the following list:

  1. flax seeds,
  2. fish oils,
  3. wax gourd,
  4. avocado, and
  5. brazil nuts.

Good nutrition is about more than simply eating more fat.  When you look at the top foods using this ranking you’ll see that you will need to use a little more discretion (e.g. avoiding vegetable oils, margarine and fortified products) due to the fact that nutrients and fibre have such a low ranking.

ganze und halbe reife avocado isoliert auf weissem hintergrund

fatty acids

Omega-3 fats are important and most of us generally don’t get enough, but rather get too many omega-6 fats from grain based processed foods.

Along with high levels of processed carbohydrates, excess levels of processed omega-6 fats are now being blamed for the current obesity epidemic. [5]

The foods highlighted in the following section will help you get more omega-3 to correct the balance.

no insulin index contribution

If we’re looking for the foods that are the highest in omega 3 fatty acids without consideration of insulin load we get:

  1. salmon,
  2. whitefish,
  3. shad,
  4. fish oil, and
  5. herring

I like salmon, but it’s not cheap.  I find sardines are still pretty amazing but much more cost effective. [6]  If you’re going to pay for salmon to get omega 3 fatty acids then you should make sure it’s wild caught to avoid the omega 6 oils and antibiotics in the grain fed farmed salmon.

Sardines have a very high nutrient density but still not as much omega 3 fatty (i.e. 1480mg per 100g for sardines versus 2586mg per 100g for salmon).

image014

athlete and metabolically healthy

If we factor in some consideration of insulin load, fibre and calorie density we get:

  1. salmon,
  2. marjoram,
  3. chia seeds,
  4. shad, and
  5. white fish

It’s interesting to see that there are also  excellent vegetarian sources of omega-3 fatty acids such as marjoram (pictured below) and chia seeds (though some may argue that the bio-availability of the omega 3 in the salmon is better than the plant products).

image016

weight loss

Some of the top ranking foods with omega-3 fatty acids for weight loss are:

  1. brain,
  2. chia seeds,
  3. sablefish,
  4. mackerel, and
  5. herring

While seafood is expensive, brain is cheap, though a little higher on the gross factor.

image018

Cancer survivor Andrew Scarborough tries to maximise omega 3 fatty acids to keep his brain tumour and epilepsy at bay and makes sure he eats as much brain as he can.

diabetes, nutritional ketosis and therapeutic ketosis

And if you wanted to know the oils with the highest omega-3 content, here they are:

  1. Fish oil – menhaden,
  2. Fish oil – sardine,
  3. Fish oil – salmon,
  4. Fish oil – cod liver, and
  5. Oil – seal

image019

amino acids

This section will be of interest to people trying to build muscle by highlighting the foods highest in amino acids.

no insulin index contribution

So what are the best sources of protein, regardless of insulin load?

  1. cod,
  2. egg white,
  3. soy protein isolate,
  4. whitefish, and
  5. whole egg

Again, Dwayne Johnson’s cod does well, but so does the humble egg, either the whites or the whole thing.

We have been told to limit egg consumption over the last few decades, but now, in case you didn’t get the memo, saturated fat is no longer a nutrient of concern so they’re OK again.

And while egg whites do well if you’re only looking for amino acids, however if you are also chasing vitamins, minerals and good fats I’d prefer to eat the whole egg.

image021

athlete and metabolically healthy

If you have some regard for the insulin load of your diet you end up with this list of higher fat foods:

  1. parmesan cheese,
  2. beef,
  3. tofu,
  4. whole egg, and
  5. cod.

image023

weight loss

If we aim for lower calorie density foods for weight loss we get this list:

  1. bratwurst,
  2. basil,
  3. beef,
  4. chia seeds, and
  5. parmesan cheese

The bratwurst sausage does really well in the nutrition analysis because it is nutrient dense both in amino acids and high fat which keeps the insulin load down.

image025

diabetes and nutritional ketosis

If you’re concerned about your blood glucose levels then this list of foods may be useful:

  1. chia seeds,
  2. flax seed,
  3. pork sausage,
  4. bratwurst, and
  5. sesame seeds

image028

Therapeutic ketosis

And those who are aiming for therapeutic ketosis who want to keep their insulin load from low protein may find these foods useful:

  1. flax seed,
  2. pork sausage,
  3. sesame seeds,
  4. chia seeds, and
  5. pork

image030

vitamins

People focusing on reducing their carbohydrate load will sometimes neglect vitamins and minerals, especially if they are counting total carbs rather than net carbs which can lead to neglecting veggies.

I think most people should be trying to increase the levels of indigestible fibre as it decreases the insulin load of their diet, [7] feeds good gut bacteria, leaves you feeling fuller for longer and generally comes packaged with heaps of good vitamins and minerals.

At the same time it is true that some high fibre foods also come with digestible carbohydrates which may not be desirable for someone who is trying to manage the insulin load of their diet.

The foods listed in this section will enable you to increase your vitamins while managing the insulin load of your diet to suit your goals.

no insulin index contribution

These foods will give you the biggest bang for your buck in the vitamin and mineral department if insulin resistance is not an issue for you:

  1. red peppers,
  2. liver,
  3. chilli powder,
  4. coriander, and
  5. egg yolk

Peppers (or capsicums as they’re called in Australia) are great in omelettes. image031

Liver is also very high in vitamins if you just can’t tolerate veggies.

athlete and metabolically healthy

If we bring the insulin load of your diet into consideration then these foods come to the top of the list:

  1. paprika,
  2. chilli powder,
  3. liver,
  4. red peppers, and
  5. sage

It’s interesting to see so many spices ranking so highly in these lists.  Not only are they nutrient dense but they also make the foods taste better and are more satisfying.

image034

Good food doesn’t have to taste bland!

weight loss

If weight loss is of interest to you then this list of lower calorie density foods might be useful:

  1. chilli powder,
  2. chicory greens,
  3. paprika,
  4. liver, and
  5. spinach

It will be very challenging to eat too many calories with these foods.  We find spinach to be pretty versatile whether it is in a salad or an omelette.

image036

diabetes and nutritional ketosis

These foods will give you lots of vitamins if you are trying to manage your blood glucose levels:

  1. chilli powder,
  2. endive,
  3. paprika
  4. turnip greens, and
  5. liver

Most green leafy veggies will be great for people with diabetes as well as providing excellent nutrient density and heaps of fibre.

image037

therapeutic ketosis

If you really need to keep your blood sugars down then getting your vitamins from these foods may be helpful:

  1. chilli powder,
  2. liver,
  3. liver sausage,
  4. egg yolk, and
  5. avocado

image039

minerals

no insulin index contribution

Ever wondered which real whole foods would give you the most minerals per calorie without resorting to supplements?

Here’s your answer:

  1. coriander,
  2. celery seed,
  3. basil,
  4. parsley, and
  5. spearmint

Even if you found a vitamin and mineral supplement that ticked off on all the essential nutrients there’s no guarantee that they will be absorbed by your body, or that you’re not missing a nutrient that is not currently deemed ‘essential’.  Real foods will always trump supplements!

As you look down these lists you may notice that herbs and spices top the list of foods that have a lot of minerals.  Once you have eaten as much coriander, basil, parsley and spearmint as you can and still feel hungry keep doing down the list and you will find more calorie dense foods such as spinach, eggs, sunflower seeds, and sesame seeds etc which are more common and easier to fill up on.

image041

athlete and metabolically healthy

If we factor in some consideration of insulin load then we get this list:

  1. basil,
  2. spearmint,
  3. wheat bran (crude),
  4. parsley, and
  5. marjoram

Wheat bran (crude) features in this list but it’s very rarely eaten in this natural state.  Most of the value is lost when you remove the husk from the wheat.

As much as we’re told that we shouldn’t eliminate whole food groups, grain based products just don’t rate well when you prioritise foods in terms of nutrient density.

image043

weight loss

If you’re looking for some lower calorie density options the list changes slightly:

  1. basil,
  2. caraway seed,
  3. marjoram,
  4. wheat bran (crude), and
  5. chilli powder

image044

diabetes and nutritional ketosis

If you’re trying to manage your blood sugars then this is your list of foods that are packed with minerals:

  1. basil,
  2. caraway seed,
  3. flax seed,
  4. chilli powder, and
  5. rosemary.

image045

therapeutic ketosis

If you’re aiming for therapeutic ketosis then the higher fat nuts come into the picture to get your minerals:

  1. flaxseed,
  2. sesame seed,
  3. pine / pinon nuts,
  4. sunflower seeds, and
  5. hazel nuts.

OLYMPUS DIGITAL CAMERA

application

So what does all this mean and how can we apply it?

I don’t think it’s necessary or ideal to track your food all the time, however it’s well worth taking a typical day of food and entering it into the recipe builder at nutritiondata.self.com to see where you might be lacking.

Are your vitamins or minerals low?  Protein?  What about fibre.

If you find these are lacking you can use these food lists to fill nutritional gaps while keeping in mind your ability to process carbohydrates and attaining your personal goals.

references

[1] http://nutritiondata.self.com/help/analysis-help

[2] http://ketopia.com/nutrient-density-sticking-to-the-essentials-mathieu-lalonde-ahs12/

[3] The omega 6 fatty acids are also classed as essential however it is generally recognised that we have more omega omega 6 than omega 3.

[4] http://www.muscleandfitness.com/nutrition/meal-plans/smell-what-rock-cooking

[5] http://ebm.sagepub.com/content/233/6/674.short

[6] http://nutritiondata.self.com/facts/finfish-and-shellfish-products/4114/2

[7] https://optimisingnutrition.wordpress.com/2015/03/30/what-about-fibre-net-carbs-or-total-carbs/

the cost of going low carb

  • Analysis of the USDA Cost of Food at Home database shows that fat is the cheapest macronutrient.
  • Protein is the most expensive macronutrient, however a reduced carbohydrate diet does not necessarily require an increase in protein.
  • Reducing the amount of carbohydrate and increasing the amount of fat in your diet is the most effective way to reduce your grocery bill.

background

One of the common concerns about eating differently from the norm is that it will be more expensive.

Apparently one of the reasons for the relatively low Recommended Daily Intake for protein of 0.8g/kg is that many people can’t afford to eat more protein. [1]  One of the common criticisms of Paleo or the Banting Diet (LCHF) is that it will be too expensive due to the extra protein. [2]

To see if these concerns were valid I thought it would be interesting to see what the data has can tell us about the relative cost the three macronutrients, protein, carbohydrate and fat.

protein

The chart below shows the cost per calorie versus the percentage of protein in the thousand or so foods in the USDA Cost of Food at Home database. [3]

Microsoft Word Document 30072015 21606 AM.bmp

Protein is indeed the most expensive of the three macronutrients.  As you move to the right in the chart you can see that your weekly grocery bill will increase.

Average intake of both protein and fat in the United States decreased between 1971 and 2004, with an overall increase in carbohydrate. [4]

AVPageView 30072015 21812 AM.bmp

While from a nutritional point of view there area lot of good reasons for people to eat higher levels of protein, a low carbohydrate diet is not necessarily high in protein.

People aiming for therapeutic ketosis may aim for lower amounts of protein to minimise insulin.

Tim Noakes’ Banting diet recommends that people get between 20 and 30% of their calories from protein.  He says that those with diabetes and / or insulin resistance issues should aim for the lower end of this range, while people who are active and healthy can aim for higher amounts.  [5]

Practically it is difficult to eat much more than 30% to 35% protein from real foods.

The table below shows the relative change in cost if we were to increase our protein from current average levels back to 1970s levels, or to moderate levels such as the Mediterranean diet or even the higher protein Atkins approach.

scenario % protein cost ($/kcal) change
2004 average 14.7% 4.67
1970 average 16.9% 4.83 +3%
Mediterranean 20% 5.06 +8%
Atkins 30% 5.79 +24%

As shown in the table below, the most expensive high protein foods tend to be seafood.  For reference, the average cost of food across the more than one thousand foods in the database is $5.37/kcal.

food cost ($/kcal)
crayfish 26
spinach 26
crab 24
spirulina 23
lobster 22
scallops 17
clam 16
haddock 16
cod 15

While protein can be expensive there are some low cost high protein options available.

food cost ($/kcal)
whole egg 1.70
ground turkey 2.13
beef liver 2.81
chicken heart 2.94
cottage cheese 3.58
pork 3.59
chicken liver 3.81
ham 4.10

If you are willing to try organ meats you might get them even cheaper as they are often discarded.   The cheaper organ meats also typically have a much higher nutrient density than the more popular muscle meats or even fruits or vegetables.

image003

carbohydrates

You often hear the term ‘cheap carbohydrates’, but does this mean that a diet of processed grains and sugars is the most economical way to fill your shopping trolley?

While sugar and corn starch are very cheap food ingredients per calorie, the analysis of the data suggest that a higher carbohydrate diet is actually more expensive overall.

Microsoft Word Document 30072015 21706 AM.bmp

The cheaper high high carbohydrate foods tend to be processed and calorie dense.   While the most expensive high carbohydrate foods tend to be natural foods that have a much lower calorie density. The table below shows that someone switching from a typical western diet to a reduced carbohydrate diet could make some significant savings.

scenario % carbohydrate cost ($/kcal) change
2004 average 51% 5.57
1970 average 45% 5.37 -4%
low carb 30% 4.77 -14%
ketogenic 5% 3.80 -32%

fat

So if increasing the proportion of protein and carbohydrate both increase the cost of our food bill then what makes it cheaper?  Yes it’s the other macronutrient, fat.

Increasing the proportion of fat in your diet while decreasing the carbohydrates will make your meals tastier, gentler on your blood glucose and cheaper.  Not to mention the fact that people typically spontaneously consume less calories when they consume less carbohydrates.

Microsoft Word Document 30072015 21728 AM.bmp

You may pay a premium for coconut oil, butter or olive oil relative to corn oil which is the cheapest food ingredient, however these fats are still much cheaper than the other macronutrients.

food cost ($/kcal)
corn oil 0.20
coconut oil 0.31
chicken fat 0.86
butter 1.10
bacon fat 1.12
coconut milk 1.15
cream cheese 1.76
sesame oil 2.00
cream 2.81
olive oil 2.81

It appears that the it’s the very cheapest ingredients that are so prevalent in processed foods – sugar, corn starch, corn oil, high fructose corn syrup.  Regardless of cost you’re always going to have to make a value judgement on the nutritional value of your food.

summary

Increasing the protein content of your diet will increase your grocery bill marginally.

While higher levels of protein may be ideal for people who are healthy and active, LCHF is not necessarily high protein, particularly for those who struggle to regulate their blood glucose levels.

The LCHF approach, with its combination of moderate protein, lower carbohydrates and high fat provides an optimal solution with respect to blood glucose management, nutrition and cost.

references

[1] https://www.facebook.com/physiquescienceradio/posts/378943502302499

[2] http://talkfeed.co.za/lchf-diet-on-a-budget/

[3] http://www.cnpp.usda.gov/USDAFoodPlansCostofFood

[4] http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9146789&fileId=S1368980012005423

[5] http://www.biznews.com/health/2015/01/19/complete-idiots-guide-tim-noakes-diet-banting-lchf/

insulin index v2

It’s generally difficult for healthy people to eat too much protein.

However the fact that a portion of protein can convert to glucose which in turn requires insulin can be an important consideration for people with diabetes and / or insulin resistance.

A better understanding of the insulin response to various foods would be useful for diabetics calculating their insulin dose or even to help refine food choices to manage insulin load.

Since launching the optimising nutrition blog I have had many interesting discussions and learned a lot more about protein and how it affects insulin and blood glucose.

The Most Ketogenic Diet Foods article which reviews the food insulin index data and what we can learn about our food choices has received more than 50,000 views (nearly half of the page views on the site).

Given the level of interest I thought it would be useful to review this issue from a number of different angles to cross check the conclusions and the original top down analysis.

the food insulin index… a quick refresher

If you’ve been reading my blog you would have come across discussion of the recent food insulin index testing undertaken at the University of Sydney as detailed in Kirstine Bell’s PhD thesis Clinical Application of the Food Insulin Index to Diabetes Mellitus [1] (Sept 2014).

The primary learning from the recently expanded food insulin index data is that the carbohydrate content of a food only partially explains the insulin response.

The cluster of data points on the left hand side of the figure below shows that:

  1. low carbohydrate, high fat foods trigger a negligible insulin response, while
  2. low carbohydrate high protein foods cause a significant insulin response.

image001

When we assume that fibre is indigestible and protein has about half the insulinogenic effect of carbohydrates we get a much better prediction of insulin response.

image002

The insulin requirement of a particular food is described better by the following formula:

image023

digestion time for protein versus carbohydrates

One of the limitations of the food insulin index data is that the insulin area under the curve was measured over only three hours.  This is not a big deal for foods that are high in carbohydrates as they are generally fully digested within three hours.

However protein can take much longer to digest.  In the article The Blood Glucose, Glucagon and Insulin Response to Protein we saw that the insulin response to protein in diabetics can be even greater and over a longer period than for people who do not have diabetes.

If we were to repeat the food insulin index testing over a longer period it is likely that the measured insulin response would be significantly greater and even more-so in people with diabetes.

That is, the insulin response to protein is likely to be greater than the 56% indicated by the analysis of the food insulin index data if we were to measure the insulin response over a longer period.

Wilder’s ketogenic formula

Dr Russell Wilder of the Mayo Clinic was the first to coin the term ‘ketogenic diet’. [2]  Wilder developed the diet as an alternative to fasting in the treatment of epilepsy in the 1920s.

Wilder also developed the formula shown below to determine whether a diet would be ketogenic.  If the number from this calculation was greater than 1.5 (ideally greater than 2.0) then the diet would be considered to be ketogenic and appropriate for the treatment of epileptics. [3]

image003

This formula is based on the understanding that:

  • 100% of carbohydrate is glucogenic (i.e. converts to glucose),
  • 54% of protein is glucogenic,
  • 46% of protein is ketogenic, and
  • 10% of fat is glucogenic.

I had previously searched for detail on the basis of how Wilder had arrived at the 56% / 46% split for protein and only found references suggesting that the 56% glucogenic potential of protein comes from the analysis of nitrogen in the urine of dogs. [4]  However I recently came across this paper which details Wilder’s thinking in more detail.

Wilder’s conclusion that a diet needs to have more than two times the ketogenic precursors compared to glucogenic precursors is still the basis of the formulation of diets used to treat epilepsy and other conditions today.

According to George Cahill, Krebs also found that 57g of glucose may be derived from 100g of protein. [5]   Again this is similar to the insulin demand for protein observed in the food insulin index tests .

carbohydrate counting

The most straight forward approach is to assume that protein has no impact on insulin or blood sugars.

Dr Richard Berstein and Dr Robert Atkins pioneered the concept of carbohydrate counting for weight loss and diabetes management in the 70s and 80s.  There have been various waves of popularity of low carbohydrate diets with many people finding success.

Carbohydrate counting alone is a reasonable approach that is likely to work for most people, particularly if they are not highly insulin resistant.

However there are some people that reducing carbohydrates alone doesn’t work for.   The fact that protein also generates insulin suggests that managing protein as well as carbohydrates may be necessary to manage insulin levels.

thermic effect of food

You may have heard of the concept of the thermic effect of food.  That is, different foods require different amounts of energy for the digestion process.

For example, a mushroom, which has a very low calorie density and a lot of fibre and protein, may actually require more energy to digest than is obtained from the digestion of the mushroom.

The maximum and minimum thermic effect (also known as the specific dynamic action) for each macronutrient is shown below. [6]

Microsoft Word Document 3072015 40140 PM.bmp

Compared to carbohydrates and fat, protein only yields between 76% and 84% of the energy per calorie ingested because of losses in digestion.  This is useful to know if you’re trying to minimise calorie intake.

As discussed in the Why We Get Fat V2 article, part of this thermic effect of food is also likely to be due to the fact that there is a significant loss of energy when we convert protein to glucose to be used as energy.

Steve Phinney’s “well formulated ketogenic diet”

One of the key observations from Steve Phinney’s well formulated ketogenic diet (WKFD) chart is that we need to strike a balance between carbohydrates and protein in order to maximise the ketogenic potential of our diet.

image007

You can have 30% protein and 5% carbs or 20% carbs and 10% protein and still be within the bounds of a ketogenic diet.

However if you have 30% protein and 20% carbs you will be outside the realms of a ketogenic diet because you will be producing too much glucose.

According to Nuttall and Gannon [7] the body requires between 32g and 46g of high quality dietary protein to maintain protein balance.  This equates to around 6 to 7% of calories in a 2000 to 2500 calorie diet being taken ‘off the top’ for growth and maintenance, with everything else potentially available as ‘excess’ protein for gluconeogenesis.  [note: This should not be considered optimal, but simply as a minimum reference point for the absolute minimum amount of protein.]

Interestingly, the slope of the line along the face of Phinney’s WFKD triangle corresponds with the assumption that 7% of protein goes to muscle growth and repair (protein synthesis) with 75% of the remaining ‘excess’ protein being glucogenic.

This 75% value is in the “ball park” (although a little higher) of our previous estimate of the glucogenic potential of protein based on the analysis of the food insulin index data.

amino acid potential

More recently I came across more detail on which amino acids are glucogenic, which are ketogenic and which are a bit of both. [8] [9] [10]

The table below shows the various amino acids divided up on the basis of their ketogenic versus glucogenic potential and also which are essential versus non-essential. [11]

Microsoft Word Document 3072015 34915 PM.bmp

Only two amino acids are exclusively ketogenic.  There is a handful that are both glucogenic and ketogenic.  However most of the amino acids are glycogenic, meaning that they will most likely turn into glucose if not required for protein synthesis.

According to David Bender “In  fasting  and  on  a  low  carbohydrate diet  as  much  of  the  amino  acid  carbon  as  possible  will  be  used  for gluconeogenesis  –  an ATP-expensive, and hence thermogenic process.” 

Hence it appears likely that in a low carbohydrate diet situation excess amino acids that fit under the “both” classification will be turned to glucose rather than ketones because the body needs the extra glucose which it is not getting from ingested carbohydrates.

Conversely if someone is consuming a high carbohydrate diet the excess amino acids that fit into the “both” category will be converted to ketones rather than glucose because the body is getting more than enough glucose from the diet.

So, to some extent, protein is versatile depending on the body’s need. But at the same time it is only a small portion of the amino acids that are able to do this. The fate of the majority of the amino acids is pre-destined.

The figure below shows the process of catabolism of amino acids. [12]

image005

I am not an organic chemist, but from what I understand this means that:

  • The amino acids Leucine and Lysine cannot be converted back to glucose as they are ketogenic;
  • Isoleucine, Tyrosine, Phenylalanine, Tryptophan, Threonine all enter into the amino acid catabolism cycle and can be used for various functions, such as muscle repair and growth, but can also be converted back into glucose if required (glucogenic) or turned into fatty acids (ketogenic); and
  • The remaining amino acids enter the cycle and can be used for a variety of functions in the body, but cannot be converted into fatty acids.  If they are not required they can be turned into glucose and potentially stored as body fat.

The majority of the amino acids obtained from the digestion of protein have the potential to be turned into glucose through gluconeogenesis.

The reason that we don’t see a sharp rise in blood glucose is partly because amino acids from digestion circulate in the blood until they are required.

By contrast, glucose from carbohydrates will be used to refill glycogen stores (liver and muscle) and then find their way quickly into the bloodstream.  In most people the amino acid stores in the blood are not saturated and hence there is plenty of capacity to store amino acids in the bloodstream until they are required, at least if you have good insulin sensitivity and are not diabetic.

The body does need glucose, and it is fine to get it from carbohydrates or protein via gluconeogenesis.  However many people struggle to produce enough insulin and / or are insulin resistant and hence struggle to keep their blood sugars in normal range.

For these people it makes sense to reduce the glucose load of the diet (that requires insulin) to a point that they can maintain normal blood glucose levels.

This glucose tolerance level will vary from person to person depending on their insulin sensitivity and the health of their pancreas.

tallying up the amino acids

I figured I could use this knowledge of the categorisations of the various amino acids to better understand how much of the proteins in the 8000 foods listed in the USDA food database are glucogenic verus ketogenic.

For each food in the USDA database I tallied up the weight of the glucogenic and ketogenic amino acids and the amino acids that fell onto the ‘both’ category and found that:

  • ketogenic amino acids make up only 12% by weight of the total protein across the 8000 foods in the database,
  • glucogenic amino acids comprise 74% of the foods, and
  • amino acids that fit in the “both” comprise 14% of the total weight of amino acids.

This means that somewhere between 78% and 89.5% of protein has the potential to turn into glucose, depending on whether you considered the amino acids in the ‘both’ column to be glucogenic or ketogenic, or somewhere in between.

For someone eating a low carbohydrate diet nearly 90% of ‘excess’ protein could be turned to glucose in the blood stream.

Why is this different to the observation from the food insulin index testing that approximately 56% of protein raises insulin?  Perhaps the following factors come into play:

  1. When we consider the glucogenic potential of the individual amino acids we are considering the maximum potential of protein if it is not first used for protein synthesis.  The amount of protein synthesis will be greater for say an athlete or a body builder, with less protein remaining for gluconeogenesis.
  2. Converting protein to glucose requires energy and hence some of the energy from ingested protein is lost in the process and hence is not converted to glucose.
  3. The insulin index testing is undertaken over only three hours. Protein takes much longer to digest and be metabolised into glucose hence the insulin index testing may underestimate the full glucogenic potential of protein.

which foods have the most ketogenic protein?

So I bet you are wondering which forms of protein have the highest amount of ketogenic protein.  Maybe not?  Well, I was, and I am going to share it with you.

The table below shows the foods from the USDA database that have the most ketogenic protein (assuming the ‘both’ amino acids are split 50/50 glucogenic / ketogenic) in terms of grams of ketogenic amino acids per 100 grams of the food.

Food ketogenic aminos (/100g) % ketogenic protein % insulinogenic
Seal, Bearded Alaskan 19.4g 23% 72%
Whale, Beluga 17.6g 25% 64%
Cod 16.3g 26% 68%
Seaweed, spirulina 14.2g 25% 64%
White fish 13.6g 22% 53%
Parmesan cheese 12.3g 32% 28%
Beef, sirloin 10.0g 33% 50%
Beef, ribeye 9.7g 33% 44%
Bacon 9.3g 25% 22%
Egg yolk 9.2g 27% 18%
Lamb 9.0g 25% 39%
Chicken, breast with skin 7.8g 24% 48%
Salmon 7.0g 28% 45%
Egg, whole 3.3g 26% 29%
Milk 0.9g 29% 43%

It is hard to know what to make of this list other than noting that the seal, whale and cod have the highest amounts of ketogenic protein.

Perhaps there is something about cold water animals that cause them to store more ketogenic amino acids?  This seems to align with what we see in the traditional diets of humans who may eat more fat if they are living further away from the equator but eat more carbohydrates from fruits if they live closer to the equator.

Although seal, whale and cod have high amounts of ketogenic amino acids, overall they are still quite insulinogenic.  In view of the high proportion of insulinogenic properties of some meats it is not surprising that people can thrive on a 100% meat zero carb diet because the body can get as much glucose they need from the meat.[13]  At the same time though, I’m not sure that an all meat diet can provide an optimal array of vitamins and minerals unless you are emphasising organ meats.

In view of the fact that a large amount of protein can be converted to glucose through gluconeogenesis, it seems better to focus on foods that have a lower percentage of insulinogenic calories if you are insulin resistant or do not have a fully functioning pancreas.

While there is no such thing as a glycemic index for protein, it also makes sense to avoid processed foods if you are after stable blood glucose levels and lasting satiety.  Unless you are a bodybuilder who is looking for a quick insulin spike it would be prudent to prioritise whole foods as much as possible.

summary

The table below shows a comparison of a range of glucogenic factors for protein relative to carbohydrate, summarising the discussion above.  Most of the approaches to understanding the insulinogenic portion of protein give an even higher value than suggested by the analysis of the food insulin index data.

Basis % insulinogenic Comment
Carbohydrates only 0% A lower end sensitivity assuming that no protein is converted to glucose (i.e. as per standard carbohydrate counting).
Food insulin index 56% Based on testing of > 100 foods in healthy individuals
Thermic effect of food 77% Average of additional in digestion losses minus 7%.
Wilder’s formula 54% Used in initial ketogenic formula
Krebs  / Janney 57% Based on nitrogen excretion in dogs
Glucogenic potential (min) 78% Based on summing amino acids in USDA foods database, excluding “both” aminos.
Glucogenic potential (max) 89.5% Based on summing amino acids in USDA foods database, including “both” aminos.
Steve Phinney WFKD 75% Assuming that the first 7% of calories goes to growth and repair with 75% of the remaining amino acids being glucogenic.

the most ketogenic foods… updated

I have calculated the insulinogenic potential of the foods shown in this previous article (The Most Ketogenic Diet Foods) using the following approaches:

  • carbohydrates only;
  • food insulin index data (i.e. protein is 56% insulinogenic);
  • thermic effect (i.e. protein is 77% insulinogenic); and
  • maximum glucogenic potential of the amino acids for each food (varies for each food based on data in USDA foods database).

This updated data illustrates the difference in standard carbohydrate counting and the full insulinogenic potential of the food.  While there is a range of values due to the varying amounts and types of protein overall, there is a reasonable alignment between the food insulin index (56%), thermic effect of food (77%) and maximum glucogenic potential values, particularly when we compare it to the carbohydrate only approach for the lowest carbohydrate foods.

least insulinogenic foods

food carb only (0%) FII (56%) thermic (77%) glucogenic (max)
olives 1% 4% 4% 4%
cream 3% 4% 6% 4%
pecans 2% 5% 8% 6%
Macadamia nuts 3% 5% 7% 6%
duck 0% 7% 4% 9%
pork sausage 2% 10% 19% 9%
sesame seeds 7% 7% 10% 11%
sausage 0% 9% 12% 14%
frankfurter 2% 11% 14% 14%
pepperoni 0% 10% 14% 15%
bacon 1% 16% 21% 21%
mackerel 0% 20% 28% 28%

Eggs

egg  carb only (0%) FII 56%) thermic (77%) glucogenic (max)
egg yolk 16% 15% 20% 19%
whole egg 17% 21% 23% 25%
egg white 6% 53% 71% 72%

Dairy products

Cheese

cheese carbs only (0%) FII (56%) thermic (77%) glucogenic (max)
cream cheese 5% 9% 10% 9%
brie 1% 14% 20% 18%
limburger 1% 14% 19% 18%
camembert 1% 15% 21% 19%
Monterey 1% 15% 20% 19%
cheddar 1% 15% 20% 19%
gruyere 0% 17% 23% 20%
Colby 3% 16% 21% 20%
blue 3% 16% 21% 20%
edam 2% 17% 23% 21%
gouda 2% 18% 24% 22%
feta 6% 18% 23% 22%
ricotta, whole milk 7% 21% 27% 24%
mozzarella 3% 20% 26% 26%
cream cheese, low fat 16% 25% 28% 27%
parmesan 3% 21% 27% 28%
mozzarella, skim milk 4% 26% 34% 31%
Swiss 6% 22% 27% 34%
ricotta, part skim milk 15% 33% 40% 37%
cream cheese, fat free 29% 62% 75% 72%
Swiss, low fat 8% 45% 48% 73%
cottage cheese, low fat 17% 55% 69% 86%
mozzarella, non-fat 10% 60% 79% 95%

Milk

milk carb only (0%) FII (56%) thermic (77%) % insulinogenic (max)
Full cream milk, 3.7% fat 29% 41% 41% 43%
Human milk 40% 43% 44% 43%
Skim milk, 1% fat 47% 65% 72% 69%
Chocolate milk, low fat 63% 72% 76% 70%

Yogurt

yogurt carb only (0%) FII (56%) thermic (77%) % insulinogenic (max)
plain, whole milk 30% 42% 48% 46%
Plain, low fat 44% 63% 70% 68%
fruit, low fat 71% 81% 85% 83%
plain, skim milk 55% 78% 87% 85%
fruit, non-fat 70% 90% 97% 96%

Fruits

fruit carb only (0%) FII (56%) thermic (77%) % insulinogenic (max)
olives 1% 3% 4% 4%
avocados 4% 8% 9% 7%
raspberries 42% 42% 51% 45%
blackberries 40% 42% 53% 47%
strawberries 70% 75% 76% 69%
oranges 77% 81% 83% 76%
apples 88% 89% 89% 81%
bananas 91% 91% 95% 86%

Vegetables

vegetable carb only (0%) FII (56%) thermic (77%) % insulinogenic (max)
endive 6% 22% 29% 24%
dock 5% 27% 33% 27%
mustard greens 7% 61% 43% 34%
asparagus 36% 60% 69% 34%
artichoke 22% 35% 39% 38%
sauerkraut 30% 41% 45% 40%
broccoli 3% 35% 47% 42%
lettuce 28% 44% 50% 42%
coriander 15% 36% 44% 43%
chrysanthemum leaves 0% 32% 43% 44%
alfalfa 3% 42% 57% 47%
parsley 34% 52% 59% 48%
cauliflower 32% 50% 56% 48%
spinach 24% 53% 63% 50%
bamboo shoots 19% 50% 62% 51%
mushroom 31% 56% 66% 55%
turnip 17% 30% 34% 62%
onions 78% 85% 88% 82%

Nuts, seeds and legumes

nuts, seeds legumes carbs only (0%) FII (56%) thermic (77%) % insulinogenic (max)
pecans  2% 5%  10% 5%
Macadamia  3% 5%  6% 6%
coconut meat  7% 6%  10% 7%
coconut cream  6% 7% 9% 8%
coconut milk  6% 7% 9% 8%
Brazil nuts  3% 7% 10% 9%
flax seed  1% 8% 12% 11%
walnuts  4% 9%  11% 11%
pine nuts  5% 9%  11% 11%
sesame butter (tahini)  6% 11% 15% 14%
sesame seeds  0% 12% 10% 15%
chia seeds  6% 13% 17% 16%
peanuts  4% 13%  19% 18%
sunflower seeds  9% 14% 19% 18%
pumpkin seeds  6% 14% 22% 19%
pistachio nuts  12% 19%  23% 22%
cashew butter  21% 22% 29% 25%
almonds  7% 13% 18% 17&

Fish

fish carbs only (0%) FII (56%) thermic (77%) % insulinogenic (max)
Tuna 0% 32% 44% 44%
Mackerel 0% 33% 46% 25%
Herring 0% 19% 26% 25%
Salmon 0% 24% 33% 34%
Sardine 0% 26% 36% 36%
Anchovy 0% 31% 42% 42%
Swordfish 0% 31% 42% 42%
Trout 0% 31% 44% 43%
Carp 0% 32% 43% 43%
Yellowtail 0% 36% 49% 49%
Bass 0% 37% 51% 51%
Mullet 0% 37% 51% 51%
Squid 18% 41% 49% 51%
Abalone 23% 47% 55% 57%
Monkfish 0% 44% 59% 60%
Halibut 0% 47% 24% 61%
Mussel 17% 49% 60% 62%
Oyster 21% 46% 56% 63%
Crab 0% 48% 66% 65%
Shrimp 5% 48% 64% 65%
Hadock 0% 51% 68% 66%
Perch 0% 49% 65% 67%
Clam 14% 56% 67% 71%
Scallop 19% 59% 76% 80%

Meat

meat carbs only (0%) FII (56%) thermic (77%) % insulinogenic (max)
Bologna 6% 12% 17% 14%
Frankfurter 2% 11% 14% 14%
Duck 0% 14% 17% 17%
Chorizo 2% 15% 18% 17%
Beef, ribeye 0% 15% 26% 21%
Bacon 1% 15% 21% 21%
Pork, ham 6% 17% 38% 22%
Pork, blade, hocks & shoulder 31% 23% 42% 31%
Turkey 0% 23% 29% 32%
Lamb mince 0% 24% 27% 34%
Chicken 0% 24% 34% 34%

[1] http://ses.library.usyd.edu.au/handle/2123/11945

[2] http://www.thepaleomom.com/2015/05/adverse-reactions-to-ketogenic-diets-caution-advised.html

[3] http://perfecthealthdiet.com/2011/02/ketogenic-diets-i-ways-to-make-a-diet-ketogenic/

[4] https://books.google.com.au/books?id=SqzMBQAAQBAJ&pg=PA245&dq=Krebs+1964+The+metabolic+fate+of+amino+acids.&source=gbs_toc_r&cad=4#v=onepage&q&f=false

[5] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC292907/pdf/jcinvest00272-0077.pdf – Cahill references a 1964 paper by Krebs in this paper but I can’t find the original paper.

[6] http://en.wikipedia.org/wiki/Specific_dynamic_action

[7] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636610/

[8] http://en.wikipedia.org/wiki/Glucogenic_amino_acid

[9] http://en.wikipedia.org/wiki/Ketogenic_amino_acid

[10] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0

[11] http://www.medschool.lsuhsc.edu/biochemistry/Courses/Biochemistry201/Desai/Amino%20Acid%20Metabolism%20I%2010-14-08.pdf

[12] http://en.wikipedia.org/wiki/Gluconeogenesis

[13] http://zerocarbzen.com/2015/03/09/zero-carb-interview-the-andersen-family/

trends, outliers, insulin and protein

  • The carbohydrate content of a food alone does not accurately predict insulin response.  Protein and fibre content of food also influence in insulin response.
  • The food insulin index data indicates that dietary fat is the one macronutrient that does not does not require a significant amount of insulin.
  • Net carbohydrates plus approximately half protein correlates well with observed insulin response.
  • This knowledge can be used to help select low insulin foods and more accurately calculate insulin doses for diabetics.

background

Back before the GFC I used to dabble in share trading.  I don’t know much about financial systems, but I spent a good deal of time designing and testing “trend following” trading systems.

One of the pitfalls for newbies is to design a system with excessive “curve fitting”.  That is, to design a complex system that would work fantastically on a specific set of historical data.  If you ran an overly curve fitted system on another set of data or tried to trade it in real time it would fail because it was too finely tuned to the discrete set of historical data.

“Everything should be as simple as possible, but no simpler.”

Albert Einstein

Another lesson from trading is that you should be able to describe simply why a good system works.  My trading system scanned the market for stocks that were moving up quickly over a number of time periods with minimal volatility so that I could place a close ‘stop loss’ that would take me out of the trade quickly if the trend turned.

When the GFC hit things got too volatile and I got out of the market.  It was no longer fun.  However the skills I learned as an amatuer a quantitative trader (along with my day job running multi criteria analyses to identify motorway alignments, road investments and the like) have given me an interesting angle on nutrition that I hope people find useful.

On the Optimising Nutrition blog I have tried to describe a system to manage nutrition that makes sense to me.  I want to document the things that I wish someone had shown us when we started out trying to understand diabetes and nutrition.

If we want to understand and predict the behaviour of insulin, the master regulator hormone of the human body, we need to first determine what we know that is accurate, significant and useful that we can use.

Kirstine Bell’s PhD thesis Clinical Application of the Food Insulin Index to Diabetes Mellitus[1] (Sept 2014) details the results of the latest food insulin test data for more than one hundred foods.  It also evaluates the relationship between insulin demand and protein, fat, carbohydrates, glycaemic index, glycaemic load, indigestible fibre, individual amino acids and blood glucose.

Previously I have discussed in a moderate amount of detail how to calculate how much insulin may be required based on the carbohydrate, protein and fibre ingested.  Given the importance of this issue, this article looks in more detail at what can be learned from the test data included in this thesis about the relationship between these parameters, with a view to better manage blood glucose and insulin demand.  You will see that I have tried to look at the issue from a number of different directions and have also included a more rigorous statistical analysis.

carbohydrate

Most people know that carbohydrates require insulin.  As shown in the chart below, carbohydrates goes some way to explaining insulin response.  However it is far from a perfect relationship (R2 = 0.44, r = 0.67, p < 0.05).

image001

indigestible fibre

Taking indigestible fibre into account (i.e. net carbohydrates) improves the relationship (R2 = 0.48, r = 0.69, p < 0.05).  The best correlation is achieved when we subtract all the indigestible fibre from the total carbohydrate value.  However we can see from the cluster of data points on the vertical axis there is something going on that is not explained by carbohydrates alone.

image002

The importance of dietary fibre should not be discounted, especially when trying to reduce insulin demand.  Some recommend that diabetics limit total carbohydrates, rather than considering net carbohydrates, or non-fibre carbohydrates.  The danger with a total carbohydrates approach is that people will avoid fibrous non-starchy vegetables that provide vitamins and minerals that cannot be obtained from other foods (unless you’re consuming a significant amount of organ meats), as well as feeding the gut bacteria which is also important to help improve insulin sensitivity and the body’s ability to digest fats. [2]

fat

The food insulin index data indicates that foods that are largely comprised of fat have a negligible insulin response (R2 = 0.38, r = 0.631, p < 0.001).

image003

To put this another way, the chart below shows the sum of carbohydrate plus protein (i.e. the non-fat content of foods) versus the insulin index (R2 = 0.38, r = 0.62, p < 0.001) indicating that:

  • the greater the proportion of fat in a particular food the less insulin is required; and
  • the more carbohydrates and / or protein ingested the more insulin is required.

image004

Hence, it appears that to reduce insulin demand we need to reduce carbs and / or protein!

The figure below shows a similar chart for the glucose score (i.e. the area under the curve of the blood glucose rise over three hours after ingestion of the food).  Again, this indicates that the blood glucose response is lowest for foods that contain a higher proportion of calories from fat (R2 = 0.45, r = 0.68, p < 0.001).

image005

While it appears that insulin demand is triggered by carbohydrates and protein, what is not clear is the relative degree to which carbohydrates and protein contribute to insulin demand.  Are they equivalent or does protein cause a smaller insulin  response?

protein

Another observation from trading is that you can learn a lot by considering outliers.  You have to decide whether the data points that don’t quite fit the trend are garbage or ‘black swans’ need to be accounted for in the system.

In the carbohydrate vs insulin relationship the outliers are the high protein foods that trigger a higher insulin response than can be explained by considering carbohydrates alone.

As shown in this plot, high protein foods are typically lower in carbohydrates which produce the greatest amount of glucose.  Choosing higher protein foods will generally reduce insulin (R2 = 0.10, r = 0.47, p < 0.001).

image006

Increasing protein will also typically lead to a spontaneous reduction in intake due to the thermic and satiety effects of protein. [3] [4]   Protein is critically important for many bodily functions.  It is vital to eat adequate protein.

However protein in excess of the body’s needs for growth and repair can be converted to glucose.  The fact that protein can turn to glucose represents a potential ‘hack’ for diabetics trying to manage their blood glucose as they can get the glucose required for brain function without spiking blood glucose as much as carbohydrates.

Choosing higher protein foods will generally lead to better blood glucose control.  Although high protein foods still raise the blood glucose somewhat, particularly if you are not insulin sensitive, however the blood glucose response is gentler and hence the pancreas can secrete enough insulin to balance blood glucose.

image007

For most people, transitioning to a reduced carbohydrate whole foods diet will give them most of the results they are after.  However for people with Type 1 Diabetes or people trying to design a therapeutic ketogenic diet, consideration of protein may be important to further refine the process to achieve the desired outcomes.

For a healthy bodybuilder the glucogenic and insulinogenic effect of protein might be an anabolic advantage, with the post workout protein shake providing an insulin spike to help build muscle.

However for someone struggling to lose weight on a low carb diet, considering the insulinogenic effect of protein might just be what they need to reduce insulin and normalise blood sugars and thus enable them to reach their goals.

glycaemic index

The glycaemic index is a reasonable predictor of insulin demand in terms of correlation (R2 = 0.54, r = 73, p < 0.01), however the ‘elephant in the room’ again is the high protein low carbohydrate foods (e.g. white fish, low fat cheese, lean beef etc).

image009

The other issue is that the glycaemic index is an empirical measurement that has to be measured in humans “in vivo” and can’t easily be calculated based on commonly available food properties.  And again, the glycaemic index does not deal with the insulin response from high protein foods.

glycaemic load

The same issues apply to glycaemic load.  There is a reasonable correlation between glycaemic load and insulin demand.  However it still does not explain the insulin effect of high protein foods (R2 = 0.57, r = 0.75, p < 0.01).  And you have to run these tests in real people “in vivo”.

image010

glucose score

Like the food insulin index, the glucose score is measured “in vivo” based on the area under the curve of a healthy person’s glucose rise due to a particular food.

Glucose score is interesting in that it actually achieves an excellent correlation with insulin demand (R2 = 0.75, r = 0.87, p < 0.001), however there is still a disconnect when it comes to high protein foods.

image010

It seems that some foods that do not raise blood glucose significantly over three hours still elicit an insulin response.  High protein foods digest slowly although they do still require insulin to metabolise.  In a normal healthy person the body’s insulin response to protein is balanced by release of glycogen from the liver, with blood glucose being kept in balance by insulin and glycogen. [5]

In a normal person the insulin keeps up with this slow blood glucose rise and hence we do not see a pronounced blood glucose spike due to high protein foods.

The interesting outliers here are processed low fat milk products that seem to require more insulin than would be anticipated by the blood glucose response.  On the other side of the trend line we have brown rice, pasta and other less processed whole foods which raises the blood glucose but does not require as much insulin as might be expected.

Accounting for fibre (i.e. net carbs rather than total carbs) goes some way to help anticipate the effect of processing.  However the effect of processed foods is an interesting area for future study that is beyond the capacity of this dataset to address.

I ran a number of correlation analysis and could not find an explanation of why a certain food sat above or below the trend line, whether it be carbohydrates, sugar, fibre or protein.

sugar

The sugar content of a food is not a particularly useful predictor of insulin demand (R2 = 0.10, r = 0.32, p = 0.001) compared with net carbohydrates (R2 = 0.48, r = 0.69, p < 0.05).  Quitting sugar is only part of the solution.  Most people struggling with diabetes or obesity should ideally consider their total carbohydrate intake.

image011

curve fitting

Kirstine Bells’ Clinical Application of the Food Insulin Index to Diabetes Mellitus[6] documents the development of a number of formula to explain the relationship between food properties and the food insulin index response.  The aim of this her thesis was essentially to build an improved glycemic index to predict insulin response rather than only considering changes in blood glucose.

The chart below shows the best relationship developed using a stepwise multiple linear regression analysis of the various parameters to forecast insulin demand documented in Clinical Application of the Food Insulin Index to Diabetes Mellitus. [7]

The correlation is excellent (R2 = 0.78, r = 0.89, p < 0.001).  However this relationship relies heavily on the glucose score (GS) which has to be tested “in vivo”.

image012

If we strip out the glucose score then the best relationship achieved in the thesis is the one shown below using carbohydrates and protein with a correction factor (R2 = 0.46, r = 0.68, p < 0.001).

The problem with this approach is that it assumes that high fat foods have some insulinogenic effect.  However we have seen above that high fat foods have a negligible insulin response.  This formula also does not account for indigestible fibre which should be subtracted from the total carbohydrate count.  And according to this formula a food with zero carbohydrate and zero protein would still have a significant insulin index response of 10.4, which does not make sense.

image013

simple is true

If we take out indigestible fibre (net carbs), assume that fat has a negligible insulin response and refine the protein factor to maximise the correlation with the test data, we end up with this chart which has an improved correlation compared to the model above (R2 = 0.49, r = 0.70, p < 0.001).

image014

This approach also does a good job of predicting blood glucose (R2 = 0.59, r = 0.77, p < 0.001) as shown in the chart below.

image015

practical application

Individual foods can be ranked and prioritised based on their proportion of insulinogenic calories using the following formula:

image016

Foods with the lowest proportion of insulinogenic calories will have the gentlest impact on blood glucose and have the lowest insulin demand, a consideration which will be very useful for people who are insulin resistant (i.e. Type 2 Diabetes or Pre-Diabetes) or not able to produce adequate insulin themselves (i.e. Type 1 Diabetes).

You can find a detailed list of foods ranked by their proportion of insulinogenic calories here and with consideration of nutrients and other factors based on different goals here.

Diabetics and people wanting to reduce the insulin demand of their diet can track the total insulin load (as opposed to carbohydrate counting) using the following formula:

image017

The total insulin load can be reduced by decreasing carbohydrates, increasing fibre, moderating protein to the body’s optimum requirement and increasing fat until target blood glucose are achieved.

can we design a “perfect” system?

There is still quite a degree of in this real life data.  This could be due to measurement error in the macronutrients, food quantity, individual characteristics of the people that the food was tested on, or something else.

This approach considering the insulinogenic effect of protein and carbohydrates does however help to better predict insulin demand than carbohydrate alone.

The fact that there is still a high degree of variability in the data and hence limited ability to accurately predict the insulin response to food can be mitigated by keeping the overall insulin load of the diet reasonably low.

Dr Richard Bernstein talks about the ‘law of small numbers’ whereby the compounding errors in the calculation of insulin requirement and the mismatch of insulin response with the rate of digestion misalign means that it is impossible to accurately calculate insulin dose.

The only way to manage the high level of variability is to reduce insulin demand to manageable levels.  This is especially beneficial for people who are injecting insulin, but also relevant for the rest of us.

summary

Building on the analysis of the food insulin index data, the key assumptions that underpin this system are:

  1. carbohydrates require insulin,
  2. indigestible fibre does not require insulin, and
  3. the glucogenic portion of protein that is not used for growth and repair and not lost in digestion also requires insulin.

In order to reduce our insulin load we should do the following, in order of priority:

  1. Reduce insulin load until you normalise blood glucose levels (i.e. reduce digestible carbohydrates and moderate protein if necessary),
  2. Increase nutrient density as much as you can while still maintaining good blood glucose levels (note: this will likely also include fibre from non-starchy veggies which will also increase fibre which reduces insulin and slows digestion),
  3. Reduce dietary fat if you still need to reduce body fat levels, and
  4. Implement an intermittent fasting routine to improve your insulin sensitivity and to kick-start ketosis.

references

[1] http://ses.library.usyd.edu.au/handle/2123/11945

[2] http://www.amazon.com/Brain-Maker-Power-Microbes-Protect/dp/0316380105

[3] http://wholehealthsource.blogspot.com.au/2013/04/glucagon-dietary-protein-and-low.html

[4] http://www.ncbi.nlm.nih.gov/pubmed/16002798

[5] http://wholehealthsource.blogspot.com.au/2013/04/glucagon-dietary-protein-and-low.html

[6] http://ses.library.usyd.edu.au/handle/2123/11945

[7] http://ses.library.usyd.edu.au/handle/2123/11945

[8] http://www.amazon.com/Brain-Maker-Power-Microbes-Protect-ebook/dp/B00MEMMS9I

what is a ‘well formulated ketogenic diet’?

While everyone uses fat for fuel to some degree, a ketogenic diet aims to reduce insulin levels to a point where ketone levels are high enough to be measured in the blood, breath or urine. [1]

In starvation, insulin levels plummet with glucose levels coming down and ketone levels increase progressively.

Chrome Legacy Window 27062015 23415 AM.bmp

According to Dr Steve Phinney’s chart below, [2] a “well formulated ketogenic diet” (WFKD) contains between 3 and 20% carbohydrates and between 10 and 30% protein.  Other dietary templates such as the Mediterranean or Paleo diets typically contain more carbohydrates and less fat.

image016

There is a lot of knowledge encapsulated into this chart, so I encourage you to take the time to digest it, or even better, take the 20 minutes to watch this video from the man himself.

The concern typically expressed about restricted carbohydrate diets is that they will not provide adequate nutrition (i.e. vitamins, minerals and amino acids).

Diabetics, along with the general population, are advised to eat in line with the USDA Food Pyramid / My Plate guidelines which emphasise “healthy whole grains” while discouraging saturated fat and cholesterol.

Diabetics are told that they should not deprive themselves of any foods or not to risk getting inadequate nutrition, but rather to “cover” any carbohydrates they eat with insulin (or treat with medications such as Metformin for type 2 diabetics).

Even in health circles ketosis is sometimes considered to be extreme and not worth the effort for most people, but is it really that hard to achieve?

When we look at the relationship between ketones, blood sugar and HbA1c we see that someone with excellent blood glucose levels will have a moderate amount of blood ketones.

The chart and table below are based on my tracking of blood sugars and ketone values.  Optimal blood (i.e. 4.6mmol/L) glucose corresponds to a ketone value of about 1.3mmol/L.

tracking BGs [Last saved by user] 16042015 82501 AM.bmp

HbA1c average blood sugar ketones
 (%)  (mmol/L)  (mg/dL)  (mmol/L)
low normal 4.1 3.9 70 2.1
optimal 4.5 4.6 83 1.3
excellent < 5.0 < 5.4 < 97 > 0.4
good < 5.4 < 6.0 < 108 < 0.3
danger > 6.5 > 7.8 > 140 < 0.3

In view of this it’s hard to see why ketosis is extreme.  It’s just what happens when someone has reduced their dietary insulin load to a point where they are achieving excellent blood sugars!

Ketosis is a sliding scale.  Some people will want to push their ketone levels to therapeutic levels though fasting and a higher fat diet, but this may not be necessary for general health.

Most people would benefit from reducing their dietary insulin load to a point where their blood sugars are close to excellent.

See Diabetes 102 for more info on what your blood sugars should be and the Goldilocks Glucose Zone for more thoughts on how to manipulate your diet to get excellent blood glucose levels.

I am a big fan of Steve Phinney (I attended a masterclass with him when he was in Brisbane last year), but I think he potentially alienates people when he starts off talking about the Inuit and Steffanson living off all meat diets.

I also understand why the people generally might baulk at the idea of mainlining butter and MCT oil to drive up ketones.  “How can eating all that extra fat really be healthy?” they ask.

I propose an alternative sales pitch for ketosis:

  1. ketosis occurs when your blood sugars are close to optimal,
  2. blood sugars can be optimised by reducing the insulin load of your diet, and
  3. once you optimise your blood sugars you will reduce your hunger, access your body fat for fuel and a whole host of other health markers will improve.

What’s not to like?

What do you think?

[this post is part of the insulin index series]

[Like what you’re reading?  Skip to the full story here.]

[1] http://www.dietdoctor.com/lose-weight-by-achieving-optimal-ketosis

[2] https://www.youtube.com/watch?v=2KYYnEAYCGk

why we get fat and what to do about it v2

  • Although protein does not raise blood sugars as much as carbohydrate, it still requires insulin.
  • Dietary fat does not raise your blood glucose and is not insulinogenic.
  • Optimal nutrition is about maximising micronutrients while managing your glucose load so your pancreas can keep up.
  • In addition to managing carbohydrates, moderating protein, increasing fibre and maximising nutrition, are important to optimise body fat and normalise blood glucose.

background

Gary Taubes [1] has moved the needle in terms of the wider acceptance of the hormonal theory of obesity with his books Good Calories Bad Calories and Why We Get Fat and What to Do About It. 

The hormonal theory of obesity revolves around the idea that the food we eat affects our insulin levels which in turn governs how much fat is stored or used for fuel. [2] [3]

image001

With his focus primarily on carbohydrate, Taubes has not directly address the fact that protein also requires insulin, stating:

“the assumption has always been that the effect of protein has is small compared to that of carbohydrates, and that it is muted because protein takes considerably longer to digest.” [4]

This may be true to an extent, but could a better understanding of the insulinogenic effect of protein help us further refine the hormonal theory of obesity and our ability to improve blood glucose control, particularly for those who are not able to achieve their goals by simply reducing carbohydrates?

Recently people such as Steve Phinney [5] and Jimmy Moore [6] have brought increased attention to the ketogenic diet which takes the low carbohydrate dietary approach to the next level.  One of the observations from those measuring blood ketones and trying to achieve nutritional ketosis is that, in addition to limiting carbohydrates, protein needs to be moderated in order to register meaningful blood ketone levels.  Too much protein raises insulin and reduces fat burning.

So, using Gary Taubes analogy [7], what does the food insulin index data [8] tell us that would help us ‘push the rock a bit further up the hill’?

do calories count?

The antagonists to the hormonal theory of obesity point to numerous studies that show that if you put people in a metabolic ward and feed them a set number of calories and make them exercise the same amount they will lose or gain roughly the same amount of weight regardless of the macronutrient composition of the diet. [9]

This may be largely true, other than some exceptions as discussed below.  However in the real world most people eat when they are hungry and stop when full.  Most people do not count every morsel that goes into their mouth.

It should not be necessary to consciously control our appetite.  As the Paleo community point out, somehow we seemed to have done pretty well regulating our own appetite before recent times.  Something seems to have changed for the worse. [10]

image002

Most low carbohydrate diet studies allow the low carbohydrate group to eat to satiety while the low fat group has to count calories so they do not exceed their target intake.  Even under these conditions though, the low carbohydrate typically usually wins out. [11] [12]

image003

Isn’t finding a way of eating that will make us satisfied with fewer calories the dietary Holy Grail?  When a ‘diet’ becomes enjoyable and self-regulating it is no longer a ‘diet’, it’s just a way of eating!

So what is it about higher fat dietary approaches that leave people naturally satisfied on fewer calories?

what does insulin do?

The hormone insulin is a tangible reality in our family.  We have vials of it sitting in the fridge!

My wife has had type 1 diabetes for nearly three decades and wears a pump to deliver insulin through the day with extra doses at meals.

Helping her to refine her insulin doses has become a regular pastime for me, especially through our two pregnancies to try to give our kids the best chance of success.

I think it is helpful to look at diabetics to see what happens when we have too much or too little insulin.

Type 1 diabetics, before they start on insulin, are typically wasting away because their pancreas has stopped making enough insulin. Extremely low levels of insulin cause them to use body fat and muscle for fuel to a point where they waste away.

At the other extreme, diabetics often find that they gain weight quickly when they start injecting insulin.  Insulin is an anabolic hormone that regulates how we grow muscle and store fat.

The picture below shows “JL” one of the first type 1 diabetics to receive insulin in 1922.  The photo on the left is after diagnosis but before insulin.  The photo on the right is the same child two months after starting insulin injections.

image004

Check out this post to see photos of my kids when they were born after spending nine months in a high insulin environment.  It’s hard to argue that they were born big due to gluttony and sloth in utero!

I found this explanation from Robert Lustig helpful to understand how insulin affects our appetite, energy levels and fat storage.

If we are consuming highly insulinogenic meals a little bit extra energy gets stored away each time we eat.  Unfortunately this extra food does not help us feel full or provide more energy, it just gets stored as fat and we just have to eat more at the next meal.  If we also try to restrict calories to lose weight we feel sluggish and have low energy and our metabolism down-regulates to compensate!

This chart from Richard Feinman’s The World Turned Upside Down illustrates the process of cumulative fat storage in a high insulin environment.

image005

The Atkins approach recommends that you reduce your carbohydrates to less than 20g per day during the two week ‘induction phase’ and then allows you to wind them back up slowly to the point that you stop losing weight. [13]

With Atkins however there is no consideration of the insulinogenic effect of protein.  Unlimited fat and protein are allowed as long as you are limiting carbohydrates.  The problem is if you just increase protein and still fear fat you may not get enough reduction in insulin to allow your body to properly access fat for fuel.

Richard Feinman uses the analogy that insulin is like a tap that controls fat storage.  Without high levels of insulin we can not store as much fat, and thus we have more calories available for energy and therefore do not feel the need to eat as much.

Conversely, if we eat meals that generate less insulin we will be more likely to be able to access our body fat stores for fuel (i.e. ketosis).

This net flow of energy from (rather than into) our fat cells leaves us a little less hungry at each meal because we are getting calories from our fat stores, and hence we are less like likely to overeat without consciously trying.

meal timing

In the past, the nutritional community has looked to the ‘healthy’ body building community as the model to follow.  Bodybuilders often eat five or six meals a day to make sure they gain muscle and ‘keep their metabolism high’.  Food manufacturers have been only too willing to design foods for every occasion, with a burgeoning protein and supplement industry.

The problem is, unless you’re a body builder aiming for ‘mad gainz’, working out intensely, meticulously planning your meals and tracking every calorie, increased meal frequency  is probably not going to end well for you.

The figure below demonstrates how obese people generally have elevated insulin levels throughout the day.  By contrast, lean people tend to have more punctuated bursts of insulin, with the bursts balanced by  with periods of lower circulating insulin when the body is able to access stored body fat for fuel.

image006

Like me with my caffeine addiction, constant use of anything will lead to tolerance and insensitivity. [14]  Many find they become insulin resistant due to a diet of fsat digesting highly processed carbohydrate based foods.

One option that has become more popular in recent times is the concept of intermittent fasting. [15]  [16] [17] Going for period without food (or at least carbohydrates) enables your body to decrease insulin levels and allows it to access body fat for fuel.

The increased use of body fat for fuel during the fasting period typically results in a reduction of total food intake across the day.

Some people who have tried low carbohydrate diets with limited success find that intermittent fasting is what allows them to achieve the improved blood glucose and / or weight loss they are after.

I know for me it was intermittent fasting that helped me to improve my blood sugars, raise ketone levels and kick-start fat loss that I had been striving for but not achieving, even on a low carbohydrate Paleo approach.

when a calorie is not a calorie

You may be aware that gluconeogenesis is the process where the body can produce glucose from protein.  I only realised recently that protein is made up of glucogenic amino acids (approx. 78%), ketogenic amino acids (approx. 12%) and amino acids that can be either glucogenic or ketogenic (approx. 14%). [18]

Digestion breaks protein down into amino acids which circulate in our bloodstream until they are required for muscle growth and repair (i.e. protein synthesis) or to balance blood sugars (i.e. via gluconeogenesis).

When we do not eat protein or carbohydrate for a long period the body can obtain glucose from muscle via gluconeogenesis.  This is how we can survive long periods of starvation and still supply adequate glucose to the brain.

“In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis.” [19]

For someone on a low carbohydrate diet this means that nearly 90% of protein not used for muscle growth and repair can be converted to glucose!

The fact that protein can turn to glucose just like carbohydrate at first sounds absurd, then scary.  However it is possible to use the glucogenic properties of protein as a ‘hack’ to help you achieve weight loss and / or normal blood glucose levels.

The first benefit is that glucose from protein is accessed as required from the amino acids circulating in the blood stream rather than raising blood sugar immediately, as is typically the case for carbohydrate, particularly if our liver and muscle glycogen is already full.

The second benefit is that it takes extra energy to convert protein to glucose before it can be used for energy.  This is sometimes known as the ‘thermic effect of food’. [20]

You are likely aware that one gram of carbohydrate will digest into on gram of glucose that will provide four calories to be used by the body for energy.  If you burn one gram of protein in a calorimeter you’ll get four calories of heat.

However to convert one gram of protein to glucose takes approximately one calorie, so you only get three calories for energy or body fat storage.  [21]  Viola!  A calorie is not a calorie when it comes to protein being converted to glucose via gluconeogenesis.

Sam Feltham did an interesting n=1 experiment where he compared the effect of 21 days of excess calories on a high carb diet versus the same number of calories on a LCHF approach.  The results are summarised in this chart.  The weight gain on the LCHF approach was minimal, with waist measurements coming down.  However on the high carbohydrate approach the weight gain was basically as per the calories in calories out formula.  Interestingly, the vegan approach was only slightly better than the high carbohydrate approach.

Day21Results

fat and insulin

When it comes to insulin demand and fat storage, dietary fat is unique.

The major theme that reappears throughout Richard Feinman’s The World Turned Upside down is that

“carbohydrate and protein can be turned to fat but, while glucose can be made from protein, with a few exceptions, you can not make glucose from fat.”

Excess glucose from carbohydrate and protein enters our blood stream and is removed, with the help of insulin, to be stored as fat (i.e. lipogenesis).

The chart below shows that the body secretes less insulin in response to higher fat foods. [22]

image007

If you turn things around to look at insulin demand in terms of non-fat calories (i.e. carbohydrates plus protein) we see that there is effectively no insulin response to fat!

image008

What this means is that the low fat foods we have all been eating to avoid getting fat and getting heart disease are the number one way to increase insulin, which facilitates fat storage as well as increasing insulin resistance which is the primary thing that drives heart disease! [23] [24]

If we eat fewer calories overall the body will use our body fat for energy, but only if insulin levels are low enough to allow the fat to be released for fuel.

If we are trying to lose weight the highest priority is to reduce the insulin load of our diet.  We can then eat fat to satiety while maximising nutrition.

can you eat too much fat?

So can eating too much fat make you fat?  Yes and no.

If we eat a high fat diet that is also high in carbohydrates and protein we will have high insulin levels and most likely a calorie excess.  This will lead us to store the glucose from the carbohydrates and protein as fat. [25]

However if our diet is low in carbohydrate and moderate in protein such that our insulin levels are reduced, we will be able to access our body fat for fuel, and therefore be less hungry.

In the absence of significant amounts of insulin we typically do not overeat fat.  A low carbohydrate, moderate protein, high fat diet will typically lead to reduced hunger, reduced calorie intake and typically lead to weight loss.

If you are struggling to drop weight on a high fat diet, then a period of intermittent fasting and/or tracking your food in a food diary (e.g. MyFitnessPal or Cronometre) might help establish your target macronutrient ratios and avoid overdoing the calories.  After this period of ‘retraining’ you should ideally be able to just eat when you’re hungry and stop when you are full.

The figure below shows the macronutrient ratio of four phases of a ketogenic diet according to Steve Phinney. [26]   Note how in the early phases of the ketogenic approach the dietary fat percentage does not necessarily have to be high.  Carbohydrates are low enough to reduce insulin levels to the point that body fat can be used for fuel.

image009

Once the desired weight loss is achieved carbohydrate levels can come up a little with fat increasing significantly to supply adequate calories for weight maintenance.

carbohydrate

The food insulin index data below shows us that carbohydrates are the primary macronutrient that generates insulin. [27]

image010

Carbohydrate is typically the body’s primary source of glucose.  We need some glucose for the brain to function (about 40g to 160 calories per day minimum), however the body can obtain this from protein via glycogenesis if there is no carbohydrate available.

You may have heard that the body has no need for carbohydrates and that there is no such thing as an essential carbohydrate.  This is true, however you should keep in mind that many important vitamins come packaged with carbohydrates (e.g. vegetables).

The optimal approach is to obtain high levels of nutrients while avoiding excessive insulin and normalising blood sugar.   We can do this by selecting high nutrient density, low insulin, and high fibre vegetables such as those contained in the food lists here.

fibre

While the low carbohydrate diet crowd tend to prioritise avoidance of carbohydrate-containing foods to improve blood glucose levels and achieve weight loss, many people also do well using a high fibre high vegetable approach. [28]

Most agree that eating lots of vegetables is a good idea.  As discussed in this article there is a strong basis for a low calorie density, high nutrient density diet for weight loss and health.

The insulin index data also supports this approach.  As detailed this article, the insulin demand of foods is better predicted by net carbohydrates (i.e. total carbohydrates minus indigestible fibre) than by only considering carbohydrates.

The insulin index data also supports this approach.  As detailed in this article, the insulin demand of foods is better predicted by net carbohydrates (i.e. total carbohydrates minus indigestible fibre) than by only considering carbohydrates.

Indigestible fibre effectively neutralises the insulinogenic effect of carbohydrates. Fibre also adds to the bulk of our food which helps with satiety and also feeds our gut bacteria, which is highly beneficial. [29]  [30]

Rather than taking fibre supplements, the ideal approach is to select high fibre foods that also have a low insulin load.  Some examples of these are spinach, mushroom, broccoli, and Brussels sprouts.  More options are detailed in these optimal food lists.

High fibre foods also often have a high nutrient density and a low calorie density.   By eating this type of food we ensure we are getting excellent nutrition, tend to be satisfied on fewer calories and also keep our insulin load down.

We are now learning the importance of fibre for our gut bacteria which influences the rest of our health.  Reducing the sugar and process carbohydrates will help to avoid manage any overgrowth in ‘bad bacteria’.

People who do not have blood sugar issues may do well on things like sweet potato, rice, lentils and tomatoes (these foods are included in this list of foods for the metabolically healthy).  However if you’re struggling to control your blood sugars you should be mindful that these foods will add to your insulin load and should be minimised (these lists of optimal foods for weight loss or optimal foods diabetes and nutritional ketosis are more ideal if you are struggling with high blood glucose levels).

In summary, maximising fibre is another tool that we can use, in addition to minimising carbohydrates, moderating protein and eating fat to satiety, to manage blood sugars and obesity.

protein

High protein foods do not generate a sharp rise in blood sugar compared to high carbohydrate foods because the digested amino acids circulate in the blood for use as required to raise blood sugar, rather than directly spilling into the blood stream in the same way that simple carbohydrates would raise your blood sugar if your glycogen stores were already full.

image011

Protein is also satiating and typically leads to a reduction in overall calories.  Your body will continue to search out food until it obtains adequate protein.  Once you obtain adequate protein you will be more likely to stop eating. [31]

Protein also contains a range of essential and non-essential amino acids that are required for muscle growth and repair as well as mental function.  Maximising the amount and variety of amino acids that come from our diet is the ideal approach rather than trying to supplement.

As noted above, increasing your protein intake is a possible ‘hack’ for diabetics to obtain glucose without spiking blood sugars.

Diabetics and ‘low carbers’ will often limit carbohydrates but compensate by increasing protein.  This is generally not a problem because protein is slower to digest than carbohydrate and hence the blood sugar rise from protein is slower and more manageable in comparison to carbs.  The body also releases glucagon to offset the protein used in protein synthesis which also helps to stabilise blood sugars.

However, just because protein does not spike blood sugars as aggressively as carbohydrate does not mean that it does not require insulin.    The food insulin index data indicates that while the blood sugar response is less than carbohydrates, the insulin demand of protein is still significant.

image012

According to Nuttall and Gannon between 32 and 46g of high quality dietary protein is required to maintain protein balance.  This represents around 6 to 7% of the calories in a 2000 to 2500 calorie diet being taken off the top for growth and maintenance.  Protein in excess of this level is available for gluconeogenesis.

This should not be taken to mean that extremely low amounts of protein are optimal for health or obtaining glucose from protein via gluconeogenesis is necessarily bad thing.   As noted in Phinney’s WFKD below protein levels can range between 10% and 30% while still being ketogenic.  The optimal approach revolves around maximising the amount of amino acids from protein and vitamins and minerals from generally carbohydrate based foods while at the same time keeping the glucose load low enough for your pancreas to keep up to optimise your blood sugars.

Ingested protein not used for growth and repair of the body does not magically disappear.  A small amount (approx. 12%) will be converted to ketones and used as it if were fat.  About 14% can be used either as glucose or fat.  But around 80% of protein can only be used as glucose.

This glucogenic protein in excess of the body’s requirements will also require insulin to be used for energy in the mitochondria or to be stored in the fat cells.

High levels of protein will generate insulin which will reduce fat metabolism (i.e. lower levels of ketones).  If your pancreas is struggling to supply enough insulin to maintain blood sugars then the insulin load from protein will make it harder for your pancreas to keep up and achieve optimal blood sugars.

If you are trying to lose weight then excess insulin (over and above the amount used for protein synthesis that receives glycogen) will also promote fat storage.

nutrient hunger

Similar to the concept of protein hunger, if you are not giving your body the vitamins and minerals it needs it will keep on seeking out more food.

In his Perfect Health Diet, Paul Jaminet notes that

“a nourishing, balanced diet that provides all the required nutrients in the right proportions is the key to eliminating hunger and minimising appetite and eliminating hunger at minimal caloric intake.”

It makes sense that eating a nutrient dense diet would help our body to heal and recover from anything else that might be causing insulin resistance and obesity.

Many people talk about the benefits of various supplements for different ailments and performance enhancement, but surely the best approach is to maximise the quality and range of nutrition from the food you eat every day before investing in supplements?

liver storage and insulin sensitivity

A healthy insulin sensitive person will store glucose in their liver as glycogen with minimal rise in blood sugars after eating, regardless of the macronutrients.

A person with type 2 diabetes however will often spill excess glucose into the blood stream which will cause the blood glucose levels to rise and thus additional insulin will be necessary to clear excess glucose from the blood.  Excess protein not used for protein synthesis will contribute to refilling the glucose stores in the liver and muscles. [32]

It makes sense in this situation that you would want to limit the insulin load (i.e. carbs and excess protein) to starve the liver (or ‘dry up the root’ to quote Bob Briggs) such that it is not over full in order to reduce spilling of excess glucose into the blood.

practical application

Steve Phinney is probably the most well respected authority on the ketogenic diet.  His ‘well formulated ketogenic diet’ versus other dietary approaches shown in the chart below is quite useful.

image007

You will notice that the WFKD space is a triangle indicating that you need to balance your carbohydrates and protein levels in order to manage your insulin load and achieve nutritional ketosis.

You can have 30% protein and 5% carbs, or 20% carbs and 10% protein and still be within the bounds of the WFKD triangle.

However if you run with 30% protein and 20% carbs you will be well outside the realms of a ketogenic diet because you will be producing too much insulin, meaning that you will be ‘kicked out of ketosis’ (i.e. your fat burning will be slowed).

Understanding your insulin load may be the difference between achieving your desired goals from a low carbohydrate diet and not quite getting there.

For a more detailed discussion of how to tweak your glucose load to achieve your goals check out the article the Goldilocks glucose zone.

summary

  • Although protein does not raise blood sugars as much as carbohydrate, it still requires insulin.
  • Dietary fat does not raise your blood glucose and is not insulinogenic.
  • Optimal nutrition is about maximising micronutrients while managing your glucose load so your pancreas can keep up.
  • In addition to managing carbohydrates, moderating protein, increasing fibre and maximising nutrition, are important to optimise body fat and normalise blood glucose.

[1] http://garytaubes.com/

[2] https://intensivedietarymanagement.com/tag/hormonal-obesity-theory/

[3] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329588/pdf/jcinvest00481-0161.pdf

[4] http://www.healthcentral.com/diabetes/c/36758/20088/gary-round-3/

[5] http://www.amazon.com/Keto-Clarity-Definitive-Benefits-Low-Carb/dp/1628600071

[6] http://www.artandscienceoflowcarb.com/

[7] http://ses.library.usyd.edu.au/handle/2123/11945

[8] https://www.bulletproofexec.com/gary-taubes-bad-science-gut-health-nusi-223/

[9] https://www.youtube.com/watch?v=aRCv5RWXWx8

[10] http://nchstats.com/2010/01/14/obesity-americans-still-growing-but-not-as-fast/

[11] http://www.sciencedirect.com/science/article/pii/S0899900714003323

[12] http://jama.jamanetwork.com/article.aspx?articleid=205916

[13] http://www.atkins.com/how-it-works/atkins-20/phase-1

[14] My 23andMe genetic testing tells me that I am likely to be able to metabolise caffeine quickly however I am prone to type 2 diabetes and obesity!

[15] https://intensivedietarymanagement.com/category/fasting/

[16] http://www.eatstopeat.com/

[17] http://thefastdiet.co.uk/

[18] http://en.wikipedia.org/wiki/Glucogenic_amino_acid

[19] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0

[20] http://en.wikipedia.org/wiki/Specific_dynamic_action

[21] If you want to dive into the detail on this I recommend you check out Chapter 14 of Richard Feinman’s The World Turned Upside Down.

[22] http://ses.library.usyd.edu.au/handle/2123/11945

[23] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628708/pdf/361.pdf

[24] http://www.cardiab.com/content/12/1/164

[25] http://www.sciencedirect.com/science/article/pii/S0026049514001115

[26] https://www.youtube.com/watch?v=8NvFyGGXYiI&index=1&list=PLrVWtWmYRR2BlAsGG9tr6T-B4xSum8SCc

[27] Data from http://ses.library.usyd.edu.au/handle/2123/11945

[28] http://www.mangomannutrition.com/

[29] http://www.drperlmutter.com/health-depends-gut-bacteria/

[30] http://www.drperlmutter.com/tag/type-2-diabetes/

[31] http://jn.nutrition.org/content/137/6/1478.full

[32] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0