image009 - Copy

optimising micronutrients and macronutrients for different goals

  • This article looks at the macro and micronutrient split for the most nutrient dense foods using a multi criteria analysis tailored for different goals (i.e. diabetes, therapeutic ketosis, weight loss and athletic performance).
  • High protein foods are typically much more nutrient dense than high carbohydrate foods.
  • The optimal protein intake for athletes, people who are metabolically healthy and people who are trying to lose weight is virtually unrestricted, particularly as the blood glucose impact from gluconeogenesis is not a concern and the amount of protein someone can eat is self-limiting.
  • People with diabetes and metabolic syndrome may benefit from a more moderate protein intake in order to reduce their insulin load to the point that that their pancreas can keep up and maintain normal blood glucose levels.

the setup

In a number of previous articles I have discussed minimum glucose and protein requirements based on starvation experiments.  Thinking that these are recommendations for protein a number of people responded noting that 0.8g/kg lean body mass (LBM) or 8% of calories is too low. [1]

My typical response to these comments has been along the lines of:

  • We need to get adequate amino acids from protein, just like we need adequate vitamins and minerals.
  • It’s all about finding the balance between adequate nutrition while keeping your dietary glucose load low enough so your pancreas can function efficiently.
  • The optimal approach is going to be different for each individual, depending on your needs, activity levels, personal situation and goals.

Microsoft Word Document 23082015 20658 PM.bmp

But what does this look like in practice?  What is the optimal macronutrient ratio that balances the competing goals of maximising nutrition while not overloading our body’s capacity to process those nutrients?  How do we get adequate protein for growth, repair and mental function while avoiding high blood glucose and excess body fat?

How do you find a way through all the contradictory health advice from different health camps saying ‘you can’t eat too much protein’, ‘maximise your veggies’, ‘eat fat to lose fat’, or others saying ‘intermittent fasting is the rediscovered cure for everything’?

different strokes for different folks

Context matters when it comes to designing the optimal diet.

In the article Your Personal Food Ranking System I outlined a multi criteria system to help prioritise food choices for different situations.  The system uses different weightings for a range of parameters available from the USDA food database.  I then used these parameters and weightings to develop lists of optimal foods for different situations (i.e. weight loss, diabetes / nutritional ketosis, therapeutic ketosis, and athlete / metabolically healthy) highlighting foods from the top 25% of the foods ranked using those weightings.

In developing these lists of optimal foods I also included cost considerations as a factor.  However in the discussion of optimal nutrition I don’t think cost is as important.  I also wanted to use the full USDA database of nearly 8000 foods rather than the smaller database of around 1000 foods that I have cost data for.

So we are left with the following parameters from which to develop a food ranking system:

  • nutrient density / calorie,
  • nutrient density / weight,
  • fibre / calorie,
  • fibre / weight,
  • percentage of insulinogenic calories, and
  • calories / weight.


Fibre can be useful to help feed and increase the diversity of our gut bacteria which appears to be good for a range of benefits including insulin sensitivity and autoimmunity.

The amount of fibre per calorie also seems to be a good proxy for the degree of processing involved in carbohydrate containing foods.

  • Highly processed foods = bad.
  • Minimally processed foods = good.

calorie density

Regardless of calories, it seems we eat about the same weight of food per day. [2]

Calorie density is related to fibre content.  Decreasing calorie density is a useful way to spontaneously manage energy intake.

A low calorie density typically means that your food contains a lot of water, so by itself it isn’t particularly useful;  a fortified energy drink or a slice of watermelon will end up scoring highly when we only consider nutrient density per calorie.

Considering both calorie density and fibre together ends up being a much more useful approach.

proportion of insulinogenic calories

If you are insulin resistant or obese then managing the insulin load of your diet will be an important consideration.  The percentage of insulinogenic calories concept builds on the food insulin index testing which demonstrates that both carbohydrates and protein require insulin. [3]

Keeping your percentage of insulinogenic calories low (as defined by the formula below) means reducing net carbohydrates, increasing fibre and possibly moderating protein.


This formula biases against non-fibre carbohydrates.  As noted earlier, one of the major concerns people have with this approach to identifying optimal foods is that we still need our protein.  So the question is, “to what extent would protein be penalised if we also try to maximise our nutrients?”

nutrient density

The nutrient density concept builds on the excellent work of Mat Lalonde which he discusses in this video from AHS 2012.

Lalonde shortlisted the following essential nutrients [4] which have been used in the nutritional analysis as part of the multi criteria analysis:

Essential fatty acids [5]

  1. alphalinolenic acid (omega-3) (18:3)
  2. docosahexaenoic acid (omega-3) (22:6)

Amino acids

  1. cysteine
  2. isoleucine
  3. leucine
  4. lysine
  5. phenylalanine
  6. threonine
  7. tryptophan
  8. tyrosine
  9. valine
  10. methionine
  11. histidine


  1. choline
  2. thiamine
  3. riboflavin
  4. niacin
  5. pantothenic acid
  6. vitamin A
  7. vitamin B12
  8. vitamin B6
  9. vitamin C
  10. vitamin D
  11. vitamin E
  12. vitamin K


  1. calcium
  2. copper
  3. iron
  4. magnesium
  5. manganese
  6. phosphorus
  7. potassium
  8. selenium
  9. sodium
  10. zinc

It is worth noting that the list of essential amino acids, vitamins and minerals has about equal number of elements (i.e. eleven amino acids, twelve vitamins and ten minerals).  Hence it is unlikely that we would end up biasing towards high protein foods just because we have more amino acids being counted than say vitamins or minerals.

The nutrient density for a certain food is based on a relative score calculated by comparing the amount of a particular nutrient in each food with the all of the foods in the database.

For example, if a food has an average amount of vitamin C compared to the 8000 other foods in the database it will get a score of zero because it is zero standard deviations from the mean.  If it has a large amount of a certain nutrient then it will receive a high score.  If it is two standard deviations from the mean then it gets a score of two for that nutrient.  If however it is five standard deviations from the mean it gets a maximum score of three in order to avoid prioritising foods that have massive amounts of one nutrient versus foods that have high amounts of a number of nutrients.


One example of where this limitation comes into play is kale, which has a massive amount of vitamin K, [6] versus spinach which has a high amount of vitamin K but also has a range of other nutrients and ends up with a higher overall nutrient density score.  Because of the upper limit on the score for a single nutrient, this system would give a higher ranking to spinach which has a more well-rounded nutrient profile rather than simply being an over achiever in one or two nutrients.


No weighting of individual nutrients has been applied.  Weighting one nutrient as more important than another could be useful for a particular person with a particular goal or health condition.  However at the same time it’s nice to keep the analysis ‘clean’ to avoid arguments about bias. [7]  This unweighted approach highlights foods that have a broad spectrum of nutrients at significant levels.

minimum protein

So what is the minimum amount of protein that we require?

  • According to Nuttall and Gannon [8] the body requires between 32 and 46g of high quality dietary protein per day to maintain protein balance in a starvation situation. This equates to around 6 to 7% of calories in a 2000 to 2500 calorie diet but in starvation this is how much your body will cannibalize off your muscle per day if it gets no food, with the rest coming from body fat stores.
  • The recommended daily intake (RDI) of 0.8g/kg LBM is based on an estimated average requirement (EAR) of 0.66g/kg LBM which is the amount estimated to ensure that 50% of the population are not deficient.
  • Ron Rosedale, an advocate of ketogenic diets and minimising insulin as far as possible, recommends 1.0g/kg LBM for most people, 1.25g/kg LBM if you exercise and 0.8g/kg LBM for people with diabetes. [9] [10] [11] [12]

typical protein intake

As a reference point, the American diet typically consists of between 65 and 100g of protein per day.  According to NHANES fat and protein intake has decreased over the last few decades as carbohydrate content has increased. [13]


maximum protein

Most people will find it difficult to eat more than 30% of their calories from protein from whole foods, though you can push to higher levels by using protein powders.

Protein is very satiating so our intake is typically self-limiting.  The upper limit of protein intake for our liver is said to be 200 to 300g per day, or 35 to 40% of calories from protein. [14]

The term ‘rabbit starvation’ refers to a situation where people who only have lean rabbits to eat starve because they just can’t process any more protein. [15]

This video from Dr Donald Layman gives an overview of the benefits of protein.  He says that the range of safe protein intake varies between 0.8g/kg LBM and 2.5g/kg LBM.


Steve Phinney’s WFKD triangle suggests that people will find it hard to achieve nutritional ketosis with protein levels greater than 30% of calories or 2.4g/kg LBM, even if they have very low carbohydrate levels.


In The Myth of 1 g/lb: Optimal Protein Intake for Bodybuilders[16] Menno Henselmans argues that there is a limit to how much protein we can metabolise to grow muscle.  More protein does not necessarily mean more “gainz”.  As shown in the figure below:

  • people who are sedentary will be unlikely to gain more muscle with more than 0.8kg/kg lean body mass;
  • an endurance athlete may not gain more muscle with more than 1.3g/kg lean body mass; and
  • a strength athlete will not activate more protein synthesis by eating more than around 1.8g/kg lean body mass.


Interestingly Luis Villasenor (aka Darth Luiggi, pictured below), who runs Ketogains and is studying under Henselmans, recently changed the upper limit on his Ketogains macro calculator to include an upper limit of 1.8g/kg total body mass for protein to reflect Menno’s findings.


Luis said his rationale behind the protein levels in the Ketogains macro calculator:

  • lower limit of 0.8 to 1.0g per pound of lean pound of body weight, and  .
  • upper limit that will not affect ketosis = 1.8g per total kilogram.

Luis says that protein grams over 1.8g/kg total body mass should be counted as 50% toward daily carb intake and that higher levels of protein can hinder ketone production.  Higher levels of protein are not necessarily going to be a problem if your carbs are low and / or you are insulin sensitive and have your blood glucose levels under control.  This approach certainly seems to be working for Luis!

While there is a limit to the amount of amino acids we can use for muscle growth and repair, it’s important to note that amino acids are also important for mental health.  Julia Ross’s Mood Cure details how nutrients can be targeted to address depression and a range of other mental health issues. [17]  So protein in excess of what is required for our muscles is not necessarily wasted.

To summarise, the table below shows a comparison of these minimum and maximum levels in terms of percentage of daily calories, grams per kilogram of lean body mass and grams per day for a 2250 calorie per day diet for a man with 74kg lean body mass (LBM).

scenario PRO (g/day) PRO (%) g/kg LBM
minimum (starvation) 32 6% 0.4
RDI / sedentary 59 11% 0.8
typical 90 16% 1.2
strength athlete 133 24% 1.8
WFKD max 169 30% 2.3
maximum 197 35% 2.7

the Goldilocks glucose zone

I believe that consideration of optimal protein intake needs to have some regard for the carbohydrate level, given that we can get the glucose we need from both protein and carbohydrate.  If we increase the glucose load (from carbohydrates and / or protein) above what our body can tolerate then we drive up blood glucose and insulin levels, thus ending up with obesity and diabetes.

In the Goldilocks Glucose Zone article I looked at how we can obtain glucose from both carbohydrate and protein (through gluconeogenesis).  If we are more towards the bottom left of the plot of protein versus carbohydrate chart, our diet is more likely to be more ketogenic.  However, the more we minimise protein and carbohydrates the more we risk not obtaining the fibre and nutrients that might be harder to find on a higher fat diet diet of butter, coconut oil and avocado.

What this means in practice is that the more ketogenic our diet is, the more intentional we have to be about achieving adequate nutrition and maximising the nutrient density of the foods that we eat.

Microsoft Word Document 23082015 22135 PM.bmp

therapeutic ketosis

Let’s first look at the most extreme end of the spectrum, therapeutic ketosis.  This approach is based on the theory that a low insulin load diet will help control conditions such as cancer and epilepsy.

The table below shows the weighting criteria for therapeutic ketosis, with a low percentage of insulinogenic calories being the primary goal.  Minimal weighting is given to fibre and calorie density with moderate weighting given to nutrient density.

ND / cal fibre / cal ND / weight calories / 100g insulinogenic (%)
10% 5% 10% 5% 70%

People who are aiming for therapeutic ketosis in an effort to conquer cancer or epilepsy are typically motivated to reduce the insulin load of their diet, sometimes at the expense of nutrition.

Check out Andrew Scarborough’s story for a fascinating example of someone who has worked very hard to maximise nutrition while still having a very low insulin load.   Andrew focuses on maximising omega-3 fats and has to avoid ketogenic favourites such as avocado and coconut oil due to his intolerances.

I’ve sorted the foods in the USDA food database using these weightings and plotted the highest ranking 5% of these foods against the protein versus net carbs chart with the various levels of ketosis.  On average these foods have a very low 1.4% net carbohydrates and a fairly low 11% protein (i.e. approximately the RDI minimum level for sedentary people).


In the bottom left hand corner of the chart butter, cream and oils make the list due to their very low percentage of insulinogenic calories.  However what I find most interesting is to look at the foods that make the list due to their higher nutritional value such as spices, olives, bacon and cheese.

You can download the list of the top 500 foods ranked using this system here to review the outputs of the system in more detail.  Because nutrient density and fibre don’t play a big part in this ranking there are lot of high fat foods here that don’t have a lot of amazing nutritional properties, so you’ll need to use your discretion to find foods from this list that suit your goals other than just being high fat.

diabetes and nutritional ketosis

The table below shows the weighting to identify optimal foods for diabetes and nutritional ketosis.  This approach is less extreme than the therapeutic ketosis approach with only half the weighting in the multi criteria analysis being given to the insulinogenic properties with some of the weighting spread to nutritional density and calorie density.

ND / cal fibre / cal ND / weight calories / 100g insulinogenic (%)
10% 10% 10% 10% 60%

The plot below shows the top 5% of foods in the USDA database ranked using this weighting in terms of protein versus net carbohydrates.  On average these foods have 2% net carbohydrates and 20% protein which aligns reasonably well with what we see practiced in the low carbohydrate and diabetic community.

Protein levels are moderate in order to ensure adequate levels of amino acids while managing the insulin load of the diet.  With such low levels of carbohydrates this approach is certainly still ketogenic!

To give some context it’s worth noting that the typical western diet is about 15% of calories from protein, [18] so most people would need to eat more protein to achieve these levels.

Again, it’s interesting to look at the outliers that make the cut due to their nutritional density such as black pepper, parsley, rosemary, spinach and liver.  Although these foods have a higher percentage of insulinogenic calories it would be hard to overeat them.

You can download the top 500 foods using this system here.


weight loss

This approach to the weighting of the multi criteria ranking is designed for someone who already has their blood glucose levels under control, but still wants to lose more weight.

Some people find that they can achieve their target weight on a ketogenic diet.  However others don’t have the same degree of success and perhaps may need more help to reduce their calories lower through food choices to help them lose weight.

While many people find that a higher fat diet will naturally lead to increased satiety with the reduced insulin load enabling stored body fat to be released for fuel, it is still possible to overdo your calories on a high fat diet.  Too many calories, even with ketogenic macronutrient ratios, can still mess with your insulin sensitivity and cause weight gain. [19]

Chris Gardner’s A to Z trial [20] highlighted that people with insulin resistance lost the most weight if they reduced their insulin load, while people who were not insulin resistant could lose weight on any diet as long it was low enough in calories. [21] [22]


The table below shows the weighting for the suggested optimal foods for weight loss which prioritises high fibre, high nutrient density and low calorie density foods rather than focusing as much on insulin load.

ND / cal fibre / cal ND / weight calories / 100g insulinogenic (%)
15% 10% 15% 20% 40%

This approach might be appropriate for a person that still has weight to lose but has gained control of their blood glucose levels and meets the following criteria:

  • HbA1c < 5.4mmol/L
  • fasting blood sugar < 5.0mmol/L (90mg/dL)
  • average blood sugar < 5.4mmol/L (100mg/dL)
  • post meal blood sugar < 6.7mmol/L (120mg/dL)

Being overweight and / or having a larger than desirable waist line is usually a good sign you are insulin resistant, so most people wanting to lose weight should typically start with the diabetes / nutritional ketosis approach (possibly with some intermittent fasting) until they get their blood glucose levels and insulin resistance under control.

As indicated by the chart above from the analysis of Gardner’s study, the low carb approach worked the best regardless of insulin resistance status.  Designing a diet that is high in fibre, has high nutrient density,  while still being fairly low in carbohydrates and calories, may help automatically limit food intake and manage calorie intake. This way we are focusing on food quality rather than having to count calories!

The plot below shows the top 500 foods using the weight loss ranking.  You will note that there are a lot of foods that sit well outside the ketogenic triangle.  On average we have 4% net carbohydrates and 36% protein.

Once we reduce the emphasis on glucose load the system will strongly prioritise protein rather than carbohydrate-based foods to source nutrition!


With the priority on high fibre and low calorie density, this approach would simply make it physically difficult for someone to overeat.  The insulin load will naturally be reduced because you just won’t be able to binge on calorie dense foods!

If you can manage to eat 2250 calories per day (i.e. typical intake[23]) of the top 10% of foods prioritised using these weightings you would be eating 150g of net carbs but also 130g of fibre!  Most people would struggle to eat this much fibre and volume of food.  If they were able to consume only 1500 calories per day they would be getting 120g of protein, 100g net carbs and 85g of fibre.

While 100g of net carbohydrates is high by low carb standards it is much less than the 300g per day consumed by most people and is unlikely to drive insulin resistance in most people because the carbohydrates being consumed would have an extremely low glycemic index!

If you find your blood glucose levels are drifting up using this approach (i.e. post meal blood sugars of greater than 6.7mmol/L or 120mg/dL) you could revert back to the diabetic / nutritional ketosis approach to make certain you are keeping your insulin levels low enough to be able to successfully lose weight.

You can download the top 500 highest ranking foods using this approach here.

athletes and metabolically healthy

As shown in the weightings in the table below, this approach maximises nutrient density without trying to minimise calorie density.  If you’re a lean athlete trying to refuel quickly you won’t want to be eating a pile of low calorie density lettuce and spinach to fill your calorie needs.  You will be interested in maximising nutrient density to maximise health and athletic performance.

ND / cal fibre / cal ND / weight calories / 100g insulinogenic (%)
30% 10% 30% 10% 20%

The top 500 foods using this ranking are plotted below.  On average these foods are 4% net carbohydrate and 36% protein.  Most people will find it difficult to eat greater than 30% protein from whole food sources, so as with the weight loss approach, this scenario would enable you to basically eat as much protein as you wanted from real food sources.

If you’re lean and insulin sensitive then it’s hard to eat too much protein.  Again, if you found that your blood glucose levels were driving up with this approach you should revert to foods with a lower insulin load.

You can download the top 500 highest ranking foods using this approach here.


without consideration of insulin load

To see if the insulin load was adversely biasing the analysis against carbohydrate and towards protein, I thought that it would be worth running the analysis without the percentage of insulinogenic calories as a consideration.

The table below shows the weightings used for this scenario which heavily bias towards nutrient density and with a smaller weighting towards fibre and calorie density.

ND / cal fibre / cal ND / weight calories / 100g insulinogenic (%)
35% 15% 35% 15% 0%

The chart below shows the most nutrient dense 500 foods plotted on the protein versus net carbohydrates chart with an average of 54% protein and 12% carbohydrates.  While the carbohydrates comes up a little compared to the other scenarios the protein is very high.

If the insulin load is not considered the macronutrient split of the highest ranking foods is 54% protein and 12% carbohydrates.  However this isn’t realistic as we can’t physically eat that much protein, so we will end up eating either more fat or carbohydrate rather than all that protein.  If you have some level of insulin resistance, fat is the logical choice rather than carbohydrates in order to maintain normal blood glucose levels.


You can download the highest ranking 500 foods using this criteria here.


The table below lists the average protein and net carbs for the highest ranking foods for the four dietary approaches.  The figure below shows this graphically.

approach protein (%) net carbs (%) insulinogenic (%) protein (g) net carb (g)
therapeutic ketosis 11% 1% 8% 62 6
diabetes / nutritional ketosis 20% 2% 13% 113 11
weight loss (2250 cal) 36% 4% 24% 203 22
weight loss (1500 cal) 29% 3% 19% 109 11
athlete / metabolically healthy 36% 12% 38% 203 67
typical western diet 16% 50% 59% 90 281


When it comes to weight loss it’s also useful to consider the fat that is coming from your body.  I have shown the macronutrient split for the weight loss scenario both in terms of a 2250 calorie per day diet and as a 1500 calorie per day diet assuming that the calorie deficit is coming from fat stores.

For athletes and the metabolically healthy, protein is largely unrestricted when it comes to maximising nutrient density.  The maximum amount of protein for people who are insulin sensitive will come down to how much they can physically eat.

Even if blood glucose levels are not a concern the most nutrient dense foods are still quite low in net carbohydrates.

If you have some degree of insulin resistance or elevated blood sugar it may be useful to moderate protein levels to some extent as well as cutting carbs.  If you are watching your blood glucose levels and / or ketones you can wind the amount of protein back until you achieve your target levels.

In all scenarios nutrient density was maximised, with much less carbohydrate relative to the western diet.


[1] See comments section in and


[3] It’s worth noting that Metformin works by limiting gluconeogenesis (i.e. the conversion of protein into glucose) in order to help the body better manage blood glucose levels (see


[5] The omega 6 fatty acids are also classed as essentially however it is generally recognised that we have more e

[6] Possibly more than the body could ever use especially in a low fat environment given that it is a fat soluble nutrient.

[7] For example see Chris Masterjohn’s review of Joel Furhman’s ANDI index at





[12] While Rosedale has his reasons for reducing protein such as longevity and avoiding the mTOR metabolic pathway, this minimal protein approach may not be ideal if your goal is to maximise nutrition.  Check out this interesting discussion between Robb Wolf and Jamie Scott from the 52 minute mark in this podcast about the balance between health and longevity when it comes to optimal protein intake levels.  –  I tend to agree with the approach to maximise health and vitality now rather than eating for theoretical longevity with reduced health and vitality now.












7 thoughts on “optimising micronutrients and macronutrients for different goals”

  1. Have enjoyed & learned more from your fantastic Email-posts than i have from spending a small fortune on many, many books! Thankyou (:


  2. Marty, awesome blog, this will take hours to digest all the knowledge!

    I have one question thou. In this blog you explained how to target macros based on person’s goals. How about a combination. Like if Id like to keep a therapeutic ketosis level but I am a very active person, an amateur athlete (not a bodybuilder!) lets say, so I need more protein. Is it possible to combine such goals? I am 180cm, 75kg with 10% BF.


    1. Yeah, it’s just a matter of eating enough protein for muscle growth and repair. 20 to 25% protein with lots of nonstarchy veggies is a pretty good approach. Even more protein is great if you don’t have blood sugar issues to manage.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s