trends, outliers, insulin and protein

  • The carbohydrate content of a food alone does not accurately predict insulin response.  Protein and fibre content of food also influence in insulin response.
  • The food insulin index data indicates that dietary fat is the one macronutrient that does not does not require a significant amount of insulin.
  • Net carbohydrates plus approximately half protein correlates well with observed insulin response.
  • This knowledge can be used to help select low insulin foods and more accurately calculate insulin doses for diabetics.

background

Back before the GFC I used to dabble in share trading.  I don’t know much about financial systems, but I spent a good deal of time designing and testing “trend following” trading systems.

One of the pitfalls for newbies is to design a system with excessive “curve fitting”.  That is, to design a complex system that would work fantastically on a specific set of historical data.  If you ran an overly curve fitted system on another set of data or tried to trade it in real time it would fail because it was too finely tuned to the discrete set of historical data.

“Everything should be as simple as possible, but no simpler.”

Albert Einstein

Another lesson from trading is that you should be able to describe simply why a good system works.  My trading system scanned the market for stocks that were moving up quickly over a number of time periods with minimal volatility so that I could place a close ‘stop loss’ that would take me out of the trade quickly if the trend turned.

When the GFC hit things got too volatile and I got out of the market.  It was no longer fun.  However the skills I learned as an amatuer a quantitative trader (along with my day job running multi criteria analyses to identify motorway alignments, road investments and the like) have given me an interesting angle on nutrition that I hope people find useful.

On the Optimising Nutrition blog I have tried to describe a system to manage nutrition that makes sense to me.  I want to document the things that I wish someone had shown us when we started out trying to understand diabetes and nutrition.

If we want to understand and predict the behaviour of insulin, the master regulator hormone of the human body, we need to first determine what we know that is accurate, significant and useful that we can use.

Kirstine Bell’s PhD thesis Clinical Application of the Food Insulin Index to Diabetes Mellitus[1] (Sept 2014) details the results of the latest food insulin test data for more than one hundred foods.  It also evaluates the relationship between insulin demand and protein, fat, carbohydrates, glycaemic index, glycaemic load, indigestible fibre, individual amino acids and blood glucose.

Previously I have discussed in a moderate amount of detail how to calculate how much insulin may be required based on the carbohydrate, protein and fibre ingested.  Given the importance of this issue, this article looks in more detail at what can be learned from the test data included in this thesis about the relationship between these parameters, with a view to better manage blood glucose and insulin demand.  You will see that I have tried to look at the issue from a number of different directions and have also included a more rigorous statistical analysis.

carbohydrate

Most people know that carbohydrates require insulin.  As shown in the chart below, carbohydrates goes some way to explaining insulin response.  However it is far from a perfect relationship (R2 = 0.44, r = 0.67, p < 0.05).

image001

indigestible fibre

Taking indigestible fibre into account (i.e. net carbohydrates) improves the relationship (R2 = 0.48, r = 0.69, p < 0.05).  The best correlation is achieved when we subtract all the indigestible fibre from the total carbohydrate value.  However we can see from the cluster of data points on the vertical axis there is something going on that is not explained by carbohydrates alone.

image002

The importance of dietary fibre should not be discounted, especially when trying to reduce insulin demand.  Some recommend that diabetics limit total carbohydrates, rather than considering net carbohydrates, or non-fibre carbohydrates.  The danger with a total carbohydrates approach is that people will avoid fibrous non-starchy vegetables that provide vitamins and minerals that cannot be obtained from other foods (unless you’re consuming a significant amount of organ meats), as well as feeding the gut bacteria which is also important to help improve insulin sensitivity and the body’s ability to digest fats. [2]

fat

The food insulin index data indicates that foods that are largely comprised of fat have a negligible insulin response (R2 = 0.38, r = 0.631, p < 0.001).

image003

To put this another way, the chart below shows the sum of carbohydrate plus protein (i.e. the non-fat content of foods) versus the insulin index (R2 = 0.38, r = 0.62, p < 0.001) indicating that:

  • the greater the proportion of fat in a particular food the less insulin is required; and
  • the more carbohydrates and / or protein ingested the more insulin is required.

image004

Hence, it appears that to reduce insulin demand we need to reduce carbs and / or protein!

The figure below shows a similar chart for the glucose score (i.e. the area under the curve of the blood glucose rise over three hours after ingestion of the food).  Again, this indicates that the blood glucose response is lowest for foods that contain a higher proportion of calories from fat (R2 = 0.45, r = 0.68, p < 0.001).

image005

While it appears that insulin demand is triggered by carbohydrates and protein, what is not clear is the relative degree to which carbohydrates and protein contribute to insulin demand.  Are they equivalent or does protein cause a smaller insulin  response?

protein

Another observation from trading is that you can learn a lot by considering outliers.  You have to decide whether the data points that don’t quite fit the trend are garbage or ‘black swans’ need to be accounted for in the system.

In the carbohydrate vs insulin relationship the outliers are the high protein foods that trigger a higher insulin response than can be explained by considering carbohydrates alone.

As shown in this plot, high protein foods are typically lower in carbohydrates which produce the greatest amount of glucose.  Choosing higher protein foods will generally reduce insulin (R2 = 0.10, r = 0.47, p < 0.001).

image006

Increasing protein will also typically lead to a spontaneous reduction in intake due to the thermic and satiety effects of protein. [3] [4]   Protein is critically important for many bodily functions.  It is vital to eat adequate protein.

However protein in excess of the body’s needs for growth and repair can be converted to glucose.  The fact that protein can turn to glucose represents a potential ‘hack’ for diabetics trying to manage their blood glucose as they can get the glucose required for brain function without spiking blood glucose as much as carbohydrates.

Choosing higher protein foods will generally lead to better blood glucose control.  Although high protein foods still raise the blood glucose somewhat, particularly if you are not insulin sensitive, however the blood glucose response is gentler and hence the pancreas can secrete enough insulin to balance blood glucose.

image007

For most people, transitioning to a reduced carbohydrate whole foods diet will give them most of the results they are after.  However for people with Type 1 Diabetes or people trying to design a therapeutic ketogenic diet, consideration of protein may be important to further refine the process to achieve the desired outcomes.

For a healthy bodybuilder the glucogenic and insulinogenic effect of protein might be an anabolic advantage, with the post workout protein shake providing an insulin spike to help build muscle.

However for someone struggling to lose weight on a low carb diet, considering the insulinogenic effect of protein might just be what they need to reduce insulin and normalise blood sugars and thus enable them to reach their goals.

glycaemic index

The glycaemic index is a reasonable predictor of insulin demand in terms of correlation (R2 = 0.54, r = 73, p < 0.01), however the ‘elephant in the room’ again is the high protein low carbohydrate foods (e.g. white fish, low fat cheese, lean beef etc).

image009

The other issue is that the glycaemic index is an empirical measurement that has to be measured in humans “in vivo” and can’t easily be calculated based on commonly available food properties.  And again, the glycaemic index does not deal with the insulin response from high protein foods.

glycaemic load

The same issues apply to glycaemic load.  There is a reasonable correlation between glycaemic load and insulin demand.  However it still does not explain the insulin effect of high protein foods (R2 = 0.57, r = 0.75, p < 0.01).  And you have to run these tests in real people “in vivo”.

image010

glucose score

Like the food insulin index, the glucose score is measured “in vivo” based on the area under the curve of a healthy person’s glucose rise due to a particular food.

Glucose score is interesting in that it actually achieves an excellent correlation with insulin demand (R2 = 0.75, r = 0.87, p < 0.001), however there is still a disconnect when it comes to high protein foods.

image010

It seems that some foods that do not raise blood glucose significantly over three hours still elicit an insulin response.  High protein foods digest slowly although they do still require insulin to metabolise.  In a normal healthy person the body’s insulin response to protein is balanced by release of glycogen from the liver, with blood glucose being kept in balance by insulin and glycogen. [5]

In a normal person the insulin keeps up with this slow blood glucose rise and hence we do not see a pronounced blood glucose spike due to high protein foods.

The interesting outliers here are processed low fat milk products that seem to require more insulin than would be anticipated by the blood glucose response.  On the other side of the trend line we have brown rice, pasta and other less processed whole foods which raises the blood glucose but does not require as much insulin as might be expected.

Accounting for fibre (i.e. net carbs rather than total carbs) goes some way to help anticipate the effect of processing.  However the effect of processed foods is an interesting area for future study that is beyond the capacity of this dataset to address.

I ran a number of correlation analysis and could not find an explanation of why a certain food sat above or below the trend line, whether it be carbohydrates, sugar, fibre or protein.

sugar

The sugar content of a food is not a particularly useful predictor of insulin demand (R2 = 0.10, r = 0.32, p = 0.001) compared with net carbohydrates (R2 = 0.48, r = 0.69, p < 0.05).  Quitting sugar is only part of the solution.  Most people struggling with diabetes or obesity should ideally consider their total carbohydrate intake.

image011

curve fitting

Kirstine Bells’ Clinical Application of the Food Insulin Index to Diabetes Mellitus[6] documents the development of a number of formula to explain the relationship between food properties and the food insulin index response.  The aim of this her thesis was essentially to build an improved glycemic index to predict insulin response rather than only considering changes in blood glucose.

The chart below shows the best relationship developed using a stepwise multiple linear regression analysis of the various parameters to forecast insulin demand documented in Clinical Application of the Food Insulin Index to Diabetes Mellitus. [7]

The correlation is excellent (R2 = 0.78, r = 0.89, p < 0.001).  However this relationship relies heavily on the glucose score (GS) which has to be tested “in vivo”.

image012

If we strip out the glucose score then the best relationship achieved in the thesis is the one shown below using carbohydrates and protein with a correction factor (R2 = 0.46, r = 0.68, p < 0.001).

The problem with this approach is that it assumes that high fat foods have some insulinogenic effect.  However we have seen above that high fat foods have a negligible insulin response.  This formula also does not account for indigestible fibre which should be subtracted from the total carbohydrate count.  And according to this formula a food with zero carbohydrate and zero protein would still have a significant insulin index response of 10.4, which does not make sense.

image013

simple is true

If we take out indigestible fibre (net carbs), assume that fat has a negligible insulin response and refine the protein factor to maximise the correlation with the test data, we end up with this chart which has an improved correlation compared to the model above (R2 = 0.49, r = 0.70, p < 0.001).

image014

This approach also does a good job of predicting blood glucose (R2 = 0.59, r = 0.77, p < 0.001) as shown in the chart below.

image015

practical application

Individual foods can be ranked and prioritised based on their proportion of insulinogenic calories using the following formula:

image016

Foods with the lowest proportion of insulinogenic calories will have the gentlest impact on blood glucose and have the lowest insulin demand, a consideration which will be very useful for people who are insulin resistant (i.e. Type 2 Diabetes or Pre-Diabetes) or not able to produce adequate insulin themselves (i.e. Type 1 Diabetes).

You can find a detailed list of foods ranked by their proportion of insulinogenic calories here and with consideration of nutrients and other factors based on different goals here.

Diabetics and people wanting to reduce the insulin demand of their diet can track the total insulin load (as opposed to carbohydrate counting) using the following formula:

image017

The total insulin load can be reduced by decreasing carbohydrates, increasing fibre, moderating protein to the body’s optimum requirement and increasing fat until target blood glucose are achieved.

can we design a “perfect” system?

There is still quite a degree of in this real life data.  This could be due to measurement error in the macronutrients, food quantity, individual characteristics of the people that the food was tested on, or something else.

This approach considering the insulinogenic effect of protein and carbohydrates does however help to better predict insulin demand than carbohydrate alone.

The fact that there is still a high degree of variability in the data and hence limited ability to accurately predict the insulin response to food can be mitigated by keeping the overall insulin load of the diet reasonably low.

Dr Richard Bernstein talks about the ‘law of small numbers’ whereby the compounding errors in the calculation of insulin requirement and the mismatch of insulin response with the rate of digestion misalign means that it is impossible to accurately calculate insulin dose.

The only way to manage the high level of variability is to reduce insulin demand to manageable levels.  This is especially beneficial for people who are injecting insulin, but also relevant for the rest of us.

summary

Building on the analysis of the food insulin index data, the key assumptions that underpin this system are:

  1. carbohydrates require insulin,
  2. indigestible fibre does not require insulin, and
  3. the glucogenic portion of protein that is not used for growth and repair and not lost in digestion also requires insulin.

In order to reduce our insulin load we should do the following, in order of priority:

  1. Reduce insulin load until you normalise blood glucose levels (i.e. reduce digestible carbohydrates and moderate protein if necessary),
  2. Increase nutrient density as much as you can while still maintaining good blood glucose levels (note: this will likely also include fibre from non-starchy veggies which will also increase fibre which reduces insulin and slows digestion),
  3. Reduce dietary fat if you still need to reduce body fat levels, and
  4. Implement an intermittent fasting routine to improve your insulin sensitivity and to kick-start ketosis.

references

[1] http://ses.library.usyd.edu.au/handle/2123/11945

[2] http://www.amazon.com/Brain-Maker-Power-Microbes-Protect/dp/0316380105

[3] http://wholehealthsource.blogspot.com.au/2013/04/glucagon-dietary-protein-and-low.html

[4] http://www.ncbi.nlm.nih.gov/pubmed/16002798

[5] http://wholehealthsource.blogspot.com.au/2013/04/glucagon-dietary-protein-and-low.html

[6] http://ses.library.usyd.edu.au/handle/2123/11945

[7] http://ses.library.usyd.edu.au/handle/2123/11945

[8] http://www.amazon.com/Brain-Maker-Power-Microbes-Protect-ebook/dp/B00MEMMS9I

what is a ‘well formulated ketogenic diet’?

While everyone uses fat for fuel to some degree, a ketogenic diet aims to reduce insulin levels to a point where ketone levels are high enough to be measured in the blood, breath or urine. [1]

In starvation, insulin levels plummet with glucose levels coming down and ketone levels increase progressively.

Chrome Legacy Window 27062015 23415 AM.bmp

According to Dr Steve Phinney’s chart below, a “well formulated ketogenic diet” contains between 3 and 20% carbohydrates and between 10 and 30% protein.

image016

Other dietary templates such as the Mediterranean or Paleo diets typically contain more carbohydrates and less fat.

The concern typically expressed about restricted carbohydrate diets is that they will not provide adequate nutrition (i.e. vitamins, minerals and amino acids).

Diabetics, along with the general population, are advised to eat in line with the USDA Food Pyramid / My Plate guidelines which emphasise “healthy whole grains” while discouraging saturated fat and cholesterol.

Diabetics are told that they should not deprive themselves of any foods or not to risk getting inadequate nutrition, but rather to “cover” any carbohydrates they eat with insulin (or treat with medications such as Metformin for type 2 diabetics).

Even in health circles ketosis is sometimes considered to be extreme and not worth the effort for most people, but is it really that hard to achieve?

When we look at the relationship between ketones, blood sugar and HbA1c we see that someone with excellent blood glucose levels will have a moderate amount of blood ketones.

The chart and table below are based on my tracking of blood sugars and ketone values.  Optimal blood (i.e. 4.6mmol/L) glucose corresponds to a ketone value of about 1.3mmol/L.

tracking BGs [Last saved by user] 16042015 82501 AM.bmp

HbA1c average blood sugar ketones
 (%)  (mmol/L)  (mg/dL)  (mmol/L)
low normal 4.1 3.9 70 2.1
optimal 4.5 4.6 83 1.3
excellent < 5.0 < 5.4 < 97 > 0.4
good < 5.4 < 6.0 < 108 < 0.3
danger > 6.5 > 7.8 > 140 < 0.3

In view of this it’s hard to see why ketosis is extreme.  It’s just what happens when someone has reduced their dietary insulin load to a point where they are achieving excellent blood sugars!

Ketosis is a sliding scale.  Some people will want to push their ketone levels to therapeutic levels though fasting and a higher fat diet, but this may not be necessary for general health.

Most people would benefit from reducing their dietary insulin load to a point where their blood sugars are close to excellent.

See Diabetes 102 for more info on what your blood sugars should be and the Goldilocks Glucose Zone for more thoughts on how to manipulate your diet to get excellent blood glucose levels.

I am a big fan of Steve Phinney (I attended a masterclass with him when he was in Brisbane last year), but I think he potentially alienates people when he starts off talking about the Inuit and Steffanson living off all meat diets.

I also understand why the people generally might baulk at the idea of mainlining butter and MCT oil to drive up ketones.  “How can eating all that extra fat really be healthy?” they ask.

I propose an alternative sales pitch for ketosis:

  1. ketosis occurs when your blood sugars are close to optimal,
  2. blood sugars can be optimised by reducing the insulin load of your diet, and
  3. once you optimise your blood sugars you will reduce your hunger, access your body fat for fuel and a whole host of other health markers will improve.

What’s not to like?

What do you think?

[this post is part of the insulin index series]

[Like what you’re reading?  Skip to the full story here.]

[1] http://www.dietdoctor.com/lose-weight-by-achieving-optimal-ketosis

[2] https://www.youtube.com/watch?v=2KYYnEAYCGk

spicy fish tacos

This spicy fish tacos meal from Dr Amy Myers MD  gives you a solid dose of omega 3 from the fish along with a good range of fats and fibre from the avocado, and other micronutrients from various vegetables and spices.

Seems there is increasingly more research coming out on the benefits of omega-3 fatty acids, EPA, DHA for a plethora of health benefits including improving brain function and slowing the ageing process by slowing reduction in the length of your telemeres.

Chrome Legacy Window 27042015 64909 AM.bmp

net carbs

insulin load carb insulin fat protein

fibre

10g 31g 31% 50% 32%

13g

why we get fat and what to do about it v2

  • Although protein does not raise blood sugars as much as carbohydrate, it still requires insulin.
  • Dietary fat does not raise your blood glucose and is not insulinogenic.
  • Optimal nutrition is about maximising micronutrients while managing your glucose load so your pancreas can keep up.
  • In addition to managing carbohydrates, moderating protein, increasing fibre and maximising nutrition, are important to optimise body fat and normalise blood glucose.

background

Gary Taubes [1] has moved the needle in terms of the wider acceptance of the hormonal theory of obesity with his books Good Calories Bad Calories and Why We Get Fat and What to Do About It. 

The hormonal theory of obesity revolves around the idea that the food we eat affects our insulin levels which in turn governs how much fat is stored or used for fuel. [2] [3]

image001

With his focus primarily on carbohydrate, Taubes has not directly address the fact that protein also requires insulin, stating:

“the assumption has always been that the effect of protein has is small compared to that of carbohydrates, and that it is muted because protein takes considerably longer to digest.” [4]

This may be true to an extent, but could a better understanding of the insulinogenic effect of protein help us further refine the hormonal theory of obesity and our ability to improve blood glucose control, particularly for those who are not able to achieve their goals by simply reducing carbohydrates?

Recently people such as Steve Phinney [5] and Jimmy Moore [6] have brought increased attention to the ketogenic diet which takes the low carbohydrate dietary approach to the next level.  One of the observations from those measuring blood ketones and trying to achieve nutritional ketosis is that, in addition to limiting carbohydrates, protein needs to be moderated in order to register meaningful blood ketone levels.  Too much protein raises insulin and reduces fat burning.

So, using Gary Taubes analogy [7], what does the food insulin index data [8] tell us that would help us ‘push the rock a bit further up the hill’?

do calories count?

The antagonists to the hormonal theory of obesity point to numerous studies that show that if you put people in a metabolic ward and feed them a set number of calories and make them exercise the same amount they will lose or gain roughly the same amount of weight regardless of the macronutrient composition of the diet. [9]

This may be largely true, other than some exceptions as discussed below.  However in the real world most people eat when they are hungry and stop when full.  Most people do not count every morsel that goes into their mouth.

It should not be necessary to consciously control our appetite.  As the Paleo community point out, somehow we seemed to have done pretty well regulating our own appetite before recent times.  Something seems to have changed for the worse. [10]

image002

Most low carbohydrate diet studies allow the low carbohydrate group to eat to satiety while the low fat group has to count calories so they do not exceed their target intake.  Even under these conditions though, the low carbohydrate typically usually wins out. [11] [12]

image003

Isn’t finding a way of eating that will make us satisfied with fewer calories the dietary Holy Grail?  When a ‘diet’ becomes enjoyable and self-regulating it is no longer a ‘diet’, it’s just a way of eating!

So what is it about higher fat dietary approaches that leave people naturally satisfied on fewer calories?

what does insulin do?

The hormone insulin is a tangible reality in our family.  We have vials of it sitting in the fridge!

My wife has had type 1 diabetes for nearly three decades and wears a pump to deliver insulin through the day with extra doses at meals.

Helping her to refine her insulin doses has become a regular pastime for me, especially through our two pregnancies to try to give our kids the best chance of success.

I think it is helpful to look at diabetics to see what happens when we have too much or too little insulin.

Type 1 diabetics, before they start on insulin, are typically wasting away because their pancreas has stopped making enough insulin. Extremely low levels of insulin cause them to use body fat and muscle for fuel to a point where they waste away.

At the other extreme, diabetics often find that they gain weight quickly when they start injecting insulin.  Insulin is an anabolic hormone that regulates how we grow muscle and store fat.

The picture below shows “JL” one of the first type 1 diabetics to receive insulin in 1922.  The photo on the left is after diagnosis but before insulin.  The photo on the right is the same child two months after starting insulin injections.

image004

Check out this post to see photos of my kids when they were born after spending nine months in a high insulin environment.  It’s hard to argue that they were born big due to gluttony and sloth in utero!

I found this explanation from Robert Lustig helpful to understand how insulin affects our appetite, energy levels and fat storage.

If we are consuming highly insulinogenic meals a little bit extra energy gets stored away each time we eat.  Unfortunately this extra food does not help us feel full or provide more energy, it just gets stored as fat and we just have to eat more at the next meal.  If we also try to restrict calories to lose weight we feel sluggish and have low energy and our metabolism down-regulates to compensate!

This chart from Richard Feinman’s The World Turned Upside Down illustrates the process of cumulative fat storage in a high insulin environment.

image005

The Atkins approach recommends that you reduce your carbohydrates to less than 20g per day during the two week ‘induction phase’ and then allows you to wind them back up slowly to the point that you stop losing weight. [13]

With Atkins however there is no consideration of the insulinogenic effect of protein.  Unlimited fat and protein are allowed as long as you are limiting carbohydrates.  The problem is if you just increase protein and still fear fat you may not get enough reduction in insulin to allow your body to properly access fat for fuel.

Richard Feinman uses the analogy that insulin is like a tap that controls fat storage.  Without high levels of insulin we can not store as much fat, and thus we have more calories available for energy and therefore do not feel the need to eat as much.

Conversely, if we eat meals that generate less insulin we will be more likely to be able to access our body fat stores for fuel (i.e. ketosis).

This net flow of energy from (rather than into) our fat cells leaves us a little less hungry at each meal because we are getting calories from our fat stores, and hence we are less like likely to overeat without consciously trying.

meal timing

In the past, the nutritional community has looked to the ‘healthy’ body building community as the model to follow.  Bodybuilders often eat five or six meals a day to make sure they gain muscle and ‘keep their metabolism high’.  Food manufacturers have been only too willing to design foods for every occasion, with a burgeoning protein and supplement industry.

The problem is, unless you’re a body builder aiming for ‘mad gainz’, working out intensely, meticulously planning your meals and tracking every calorie, increased meal frequency  is probably not going to end well for you.

The figure below demonstrates how obese people generally have elevated insulin levels throughout the day.  By contrast, lean people tend to have more punctuated bursts of insulin, with the bursts balanced by  with periods of lower circulating insulin when the body is able to access stored body fat for fuel.

image006

Like me with my caffeine addiction, constant use of anything will lead to tolerance and insensitivity. [14]  Many find they become insulin resistant due to a diet of fsat digesting highly processed carbohydrate based foods.

One option that has become more popular in recent times is the concept of intermittent fasting. [15]  [16] [17] Going for period without food (or at least carbohydrates) enables your body to decrease insulin levels and allows it to access body fat for fuel.

The increased use of body fat for fuel during the fasting period typically results in a reduction of total food intake across the day.

Some people who have tried low carbohydrate diets with limited success find that intermittent fasting is what allows them to achieve the improved blood glucose and / or weight loss they are after.

I know for me it was intermittent fasting that helped me to improve my blood sugars, raise ketone levels and kick-start fat loss that I had been striving for but not achieving, even on a low carbohydrate Paleo approach.

when a calorie is not a calorie

You may be aware that gluconeogenesis is the process where the body can produce glucose from protein.  I only realised recently that protein is made up of glucogenic amino acids (approx. 78%), ketogenic amino acids (approx. 12%) and amino acids that can be either glucogenic or ketogenic (approx. 14%). [18]

Digestion breaks protein down into amino acids which circulate in our bloodstream until they are required for muscle growth and repair (i.e. protein synthesis) or to balance blood sugars (i.e. via gluconeogenesis).

When we do not eat protein or carbohydrate for a long period the body can obtain glucose from muscle via gluconeogenesis.  This is how we can survive long periods of starvation and still supply adequate glucose to the brain.

“In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis.” [19]

For someone on a low carbohydrate diet this means that nearly 90% of protein not used for muscle growth and repair can be converted to glucose!

The fact that protein can turn to glucose just like carbohydrate at first sounds absurd, then scary.  However it is possible to use the glucogenic properties of protein as a ‘hack’ to help you achieve weight loss and / or normal blood glucose levels.

The first benefit is that glucose from protein is accessed as required from the amino acids circulating in the blood stream rather than raising blood sugar immediately, as is typically the case for carbohydrate, particularly if our liver and muscle glycogen is already full.

The second benefit is that it takes extra energy to convert protein to glucose before it can be used for energy.  This is sometimes known as the ‘thermic effect of food’. [20]

You are likely aware that one gram of carbohydrate will digest into on gram of glucose that will provide four calories to be used by the body for energy.  If you burn one gram of protein in a calorimeter you’ll get four calories of heat.

However to convert one gram of protein to glucose takes approximately one calorie, so you only get three calories for energy or body fat storage.  [21]  Viola!  A calorie is not a calorie when it comes to protein being converted to glucose via gluconeogenesis.

Sam Feltham did an interesting n=1 experiment where he compared the effect of 21 days of excess calories on a high carb diet versus the same number of calories on a LCHF approach.  The results are summarised in this chart.  The weight gain on the LCHF approach was minimal, with waist measurements coming down.  However on the high carbohydrate approach the weight gain was basically as per the calories in calories out formula.  Interestingly, the vegan approach was only slightly better than the high carbohydrate approach.

Day21Results

fat and insulin

When it comes to insulin demand and fat storage, dietary fat is unique.

The major theme that reappears throughout Richard Feinman’s The World Turned Upside down is that

“carbohydrate and protein can be turned to fat but, while glucose can be made from protein, with a few exceptions, you can not make glucose from fat.”

Excess glucose from carbohydrate and protein enters our blood stream and is removed, with the help of insulin, to be stored as fat (i.e. lipogenesis).

The chart below shows that the body secretes less insulin in response to higher fat foods. [22]

image007

If you turn things around to look at insulin demand in terms of non-fat calories (i.e. carbohydrates plus protein) we see that there is effectively no insulin response to fat!

image008

What this means is that the low fat foods we have all been eating to avoid getting fat and getting heart disease are the number one way to increase insulin, which facilitates fat storage as well as increasing insulin resistance which is the primary thing that drives heart disease! [23] [24]

If we eat fewer calories overall the body will use our body fat for energy, but only if insulin levels are low enough to allow the fat to be released for fuel.

If we are trying to lose weight the highest priority is to reduce the insulin load of our diet.  We can then eat fat to satiety while maximising nutrition.

can you eat too much fat?

So can eating too much fat make you fat?  Yes and no.

If we eat a high fat diet that is also high in carbohydrates and protein we will have high insulin levels and most likely a calorie excess.  This will lead us to store the glucose from the carbohydrates and protein as fat. [25]

However if our diet is low in carbohydrate and moderate in protein such that our insulin levels are reduced, we will be able to access our body fat for fuel, and therefore be less hungry.

In the absence of significant amounts of insulin we typically do not overeat fat.  A low carbohydrate, moderate protein, high fat diet will typically lead to reduced hunger, reduced calorie intake and typically lead to weight loss.

If you are struggling to drop weight on a high fat diet, then a period of intermittent fasting and/or tracking your food in a food diary (e.g. MyFitnessPal or Cronometre) might help establish your target macronutrient ratios and avoid overdoing the calories.  After this period of ‘retraining’ you should ideally be able to just eat when you’re hungry and stop when you are full.

The figure below shows the macronutrient ratio of four phases of a ketogenic diet according to Steve Phinney. [26]   Note how in the early phases of the ketogenic approach the dietary fat percentage does not necessarily have to be high.  Carbohydrates are low enough to reduce insulin levels to the point that body fat can be used for fuel.

image009

Once the desired weight loss is achieved carbohydrate levels can come up a little with fat increasing significantly to supply adequate calories for weight maintenance.

carbohydrate

The food insulin index data below shows us that carbohydrates are the primary macronutrient that generates insulin. [27]

image010

Carbohydrate is typically the body’s primary source of glucose.  We need some glucose for the brain to function (about 40g to 160 calories per day minimum), however the body can obtain this from protein via glycogenesis if there is no carbohydrate available.

You may have heard that the body has no need for carbohydrates and that there is no such thing as an essential carbohydrate.  This is true, however you should keep in mind that many important vitamins come packaged with carbohydrates (e.g. vegetables).

The optimal approach is to obtain high levels of nutrients while avoiding excessive insulin and normalising blood sugar.   We can do this by selecting high nutrient density, low insulin, and high fibre vegetables such as those contained in the food lists here.

fibre

While the low carbohydrate diet crowd tend to prioritise avoidance of carbohydrate-containing foods to improve blood glucose levels and achieve weight loss, many people also do well using a high fibre high vegetable approach. [28]

Most agree that eating lots of vegetables is a good idea.  As discussed in this article there is a strong basis for a low calorie density, high nutrient density diet for weight loss and health.

The insulin index data also supports this approach.  As detailed this article, the insulin demand of foods is better predicted by net carbohydrates (i.e. total carbohydrates minus indigestible fibre) than by only considering carbohydrates.

The insulin index data also supports this approach.  As detailed in this article, the insulin demand of foods is better predicted by net carbohydrates (i.e. total carbohydrates minus indigestible fibre) than by only considering carbohydrates.

Indigestible fibre effectively neutralises the insulinogenic effect of carbohydrates. Fibre also adds to the bulk of our food which helps with satiety and also feeds our gut bacteria, which is highly beneficial. [29]  [30]

Rather than taking fibre supplements, the ideal approach is to select high fibre foods that also have a low insulin load.  Some examples of these are spinach, mushroom, broccoli, and Brussels sprouts.  More options are detailed in these optimal food lists.

High fibre foods also often have a high nutrient density and a low calorie density.   By eating this type of food we ensure we are getting excellent nutrition, tend to be satisfied on fewer calories and also keep our insulin load down.

We are now learning the importance of fibre for our gut bacteria which influences the rest of our health.  Reducing the sugar and process carbohydrates will help to avoid manage any overgrowth in ‘bad bacteria’.

People who do not have blood sugar issues may do well on things like sweet potato, rice, lentils and tomatoes (these foods are included in this list of foods for the metabolically healthy).  However if you’re struggling to control your blood sugars you should be mindful that these foods will add to your insulin load and should be minimised (these lists of optimal foods for weight loss or optimal foods diabetes and nutritional ketosis are more ideal if you are struggling with high blood glucose levels).

In summary, maximising fibre is another tool that we can use, in addition to minimising carbohydrates, moderating protein and eating fat to satiety, to manage blood sugars and obesity.

protein

High protein foods do not generate a sharp rise in blood sugar compared to high carbohydrate foods because the digested amino acids circulate in the blood for use as required to raise blood sugar, rather than directly spilling into the blood stream in the same way that simple carbohydrates would raise your blood sugar if your glycogen stores were already full.

image011

Protein is also satiating and typically leads to a reduction in overall calories.  Your body will continue to search out food until it obtains adequate protein.  Once you obtain adequate protein you will be more likely to stop eating. [31]

Protein also contains a range of essential and non-essential amino acids that are required for muscle growth and repair as well as mental function.  Maximising the amount and variety of amino acids that come from our diet is the ideal approach rather than trying to supplement.

As noted above, increasing your protein intake is a possible ‘hack’ for diabetics to obtain glucose without spiking blood sugars.

Diabetics and ‘low carbers’ will often limit carbohydrates but compensate by increasing protein.  This is generally not a problem because protein is slower to digest than carbohydrate and hence the blood sugar rise from protein is slower and more manageable in comparison to carbs.  The body also releases glucagon to offset the protein used in protein synthesis which also helps to stabilise blood sugars.

However, just because protein does not spike blood sugars as aggressively as carbohydrate does not mean that it does not require insulin.    The food insulin index data indicates that while the blood sugar response is less than carbohydrates, the insulin demand of protein is still significant.

image012

According to Nuttall and Gannon between 32 and 46g of high quality dietary protein is required to maintain protein balance.  This represents around 6 to 7% of the calories in a 2000 to 2500 calorie diet being taken off the top for growth and maintenance.  Protein in excess of this level is available for gluconeogenesis.

This should not be taken to mean that extremely low amounts of protein are optimal for health or obtaining glucose from protein via gluconeogenesis is necessarily bad thing.   As noted in Phinney’s WFKD below protein levels can range between 10% and 30% while still being ketogenic.  The optimal approach revolves around maximising the amount of amino acids from protein and vitamins and minerals from generally carbohydrate based foods while at the same time keeping the glucose load low enough for your pancreas to keep up to optimise your blood sugars.

Ingested protein not used for growth and repair of the body does not magically disappear.  A small amount (approx. 12%) will be converted to ketones and used as it if were fat.  About 14% can be used either as glucose or fat.  But around 80% of protein can only be used as glucose.

This glucogenic protein in excess of the body’s requirements will also require insulin to be used for energy in the mitochondria or to be stored in the fat cells.

High levels of protein will generate insulin which will reduce fat metabolism (i.e. lower levels of ketones).  If your pancreas is struggling to supply enough insulin to maintain blood sugars then the insulin load from protein will make it harder for your pancreas to keep up and achieve optimal blood sugars.

If you are trying to lose weight then excess insulin (over and above the amount used for protein synthesis that receives glycogen) will also promote fat storage.

nutrient hunger

Similar to the concept of protein hunger, if you are not giving your body the vitamins and minerals it needs it will keep on seeking out more food.

In his Perfect Health Diet, Paul Jaminet notes that

“a nourishing, balanced diet that provides all the required nutrients in the right proportions is the key to eliminating hunger and minimising appetite and eliminating hunger at minimal caloric intake.”

It makes sense that eating a nutrient dense diet would help our body to heal and recover from anything else that might be causing insulin resistance and obesity.

Many people talk about the benefits of various supplements for different ailments and performance enhancement, but surely the best approach is to maximise the quality and range of nutrition from the food you eat every day before investing in supplements?

liver storage and insulin sensitivity

A healthy insulin sensitive person will store glucose in their liver as glycogen with minimal rise in blood sugars after eating, regardless of the macronutrients.

A person with type 2 diabetes however will often spill excess glucose into the blood stream which will cause the blood glucose levels to rise and thus additional insulin will be necessary to clear excess glucose from the blood.  Excess protein not used for protein synthesis will contribute to refilling the glucose stores in the liver and muscles. [32]

It makes sense in this situation that you would want to limit the insulin load (i.e. carbs and excess protein) to starve the liver (or ‘dry up the root’ to quote Bob Briggs) such that it is not over full in order to reduce spilling of excess glucose into the blood.

practical application

Steve Phinney is probably the most well respected authority on the ketogenic diet.  His ‘well formulated ketogenic diet’ versus other dietary approaches shown in the chart below is quite useful.

image007

You will notice that the WFKD space is a triangle indicating that you need to balance your carbohydrates and protein levels in order to manage your insulin load and achieve nutritional ketosis.

You can have 30% protein and 5% carbs, or 20% carbs and 10% protein and still be within the bounds of the WFKD triangle.

However if you run with 30% protein and 20% carbs you will be well outside the realms of a ketogenic diet because you will be producing too much insulin, meaning that you will be ‘kicked out of ketosis’ (i.e. your fat burning will be slowed).

Understanding your insulin load may be the difference between achieving your desired goals from a low carbohydrate diet and not quite getting there.

For a more detailed discussion of how to tweak your glucose load to achieve your goals check out the article the Goldilocks glucose zone.

summary

  • Although protein does not raise blood sugars as much as carbohydrate, it still requires insulin.
  • Dietary fat does not raise your blood glucose and is not insulinogenic.
  • Optimal nutrition is about maximising micronutrients while managing your glucose load so your pancreas can keep up.
  • In addition to managing carbohydrates, moderating protein, increasing fibre and maximising nutrition, are important to optimise body fat and normalise blood glucose.

[1] http://garytaubes.com/

[2] https://intensivedietarymanagement.com/tag/hormonal-obesity-theory/

[3] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329588/pdf/jcinvest00481-0161.pdf

[4] http://www.healthcentral.com/diabetes/c/36758/20088/gary-round-3/

[5] http://www.amazon.com/Keto-Clarity-Definitive-Benefits-Low-Carb/dp/1628600071

[6] http://www.artandscienceoflowcarb.com/

[7] http://ses.library.usyd.edu.au/handle/2123/11945

[8] https://www.bulletproofexec.com/gary-taubes-bad-science-gut-health-nusi-223/

[9] https://www.youtube.com/watch?v=aRCv5RWXWx8

[10] http://nchstats.com/2010/01/14/obesity-americans-still-growing-but-not-as-fast/

[11] http://www.sciencedirect.com/science/article/pii/S0899900714003323

[12] http://jama.jamanetwork.com/article.aspx?articleid=205916

[13] http://www.atkins.com/how-it-works/atkins-20/phase-1

[14] My 23andMe genetic testing tells me that I am likely to be able to metabolise caffeine quickly however I am prone to type 2 diabetes and obesity!

[15] https://intensivedietarymanagement.com/category/fasting/

[16] http://www.eatstopeat.com/

[17] http://thefastdiet.co.uk/

[18] http://en.wikipedia.org/wiki/Glucogenic_amino_acid

[19] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0

[20] http://en.wikipedia.org/wiki/Specific_dynamic_action

[21] If you want to dive into the detail on this I recommend you check out Chapter 14 of Richard Feinman’s The World Turned Upside Down.

[22] http://ses.library.usyd.edu.au/handle/2123/11945

[23] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628708/pdf/361.pdf

[24] http://www.cardiab.com/content/12/1/164

[25] http://www.sciencedirect.com/science/article/pii/S0026049514001115

[26] https://www.youtube.com/watch?v=8NvFyGGXYiI&index=1&list=PLrVWtWmYRR2BlAsGG9tr6T-B4xSum8SCc

[27] Data from http://ses.library.usyd.edu.au/handle/2123/11945

[28] http://www.mangomannutrition.com/

[29] http://www.drperlmutter.com/health-depends-gut-bacteria/

[30] http://www.drperlmutter.com/tag/type-2-diabetes/

[31] http://jn.nutrition.org/content/137/6/1478.full

[32] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0

do we really need carbs?

Current mainstream dietary guidelines recommend that we get 45 to 65% of calories from carbohydrates. [1]

In line with these recommendations carbohydrate intake has increased as people have endeavoured to avoid fat.  During this period obesity increased from 14.5% to 30.9%.

image010

It’s fair to say that macronutrient composition is only part of the story, but perhaps if we moved the carbohydrate intake back towards the ketogenic corner (along with a shift to more whole unprocessed foods) this trend would turn around again?

However more and more nutrition researchers are now saying that health authorities got it wrong about fats, and that our fear of fat has led us to the over-consumption of carbs which has caused to the current obesity epidemic. [3] [4] [5]

There are essential fatty acids that the body cannot produce, such as alpha-Linolenic acid and linoleic acid, which we need to obtain from our diet.  The body also needs amino acids from dietary protein which form the building blocks for the cells which it is unable to make from other nutrients.

Glucose however can be produced from protein via gluconeogenesis, and hence it is not technically necessary to eat carbohydrates.

Consequently, often asked (and debated) questions are:

  • If there is no such thing as an essential carbohydrate why do we need to be eating any carbohydrates?
  • If we took food insulin theory to its logical extreme, could (or should) we live off just fat and “adequate” protein?
  • How low (carb) can we go while still getting adequate nutrition?

How do we find the optimal balance between obtaining adequate nutrition and energy while avoiding the negative impacts of excess insulin caused by high carbohydrate consumption?

[this post is part of the insulin index series]

[Like what you’re reading?  Skip to the full story here.]

[1] http://www.mayoclinic.org/healthy-living/nutrition-and-healthy-eating/in-depth/how-to-eat-healthy/art-20046590

[2] http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5304a3.htm

[3] http://blog.joslin.org/2015/02/nutrition-revolution-the-end-of-the-high-carbohydrates-era-for-type-2-diabetes-prevention-and-management/

[4] http://en.wikipedia.org/wiki/Tim_Noakes

[5] http://www.peterbrukner.com/category/diet/

spinach and cheddar scrambled eggs

This breakfast idea is spinach and cheddar scrambled eggs from the ketogenic recipe site Ruled Me.

Incredibly simple, nutritious and yummy all at the same time!

The ingredients are simply spinach, cheddar, eggs, olive oil and cream.

I highly recommend this style of meal as a quick and simple, no fuss meal option regardless of whether your goal is weight loss, normalising blood sugar, or nutritional density.

11034249_10152630963685544_7181909777557915531_n

The nutritional analysis below shows that this recipe scores very well in both the nutritional balance and protein quality while still only having 6g net carbohydrate for a 500 calorie serving.

11029526_10152630974785544_7763448797356891644_o

net carbs

insulin load carb insulin fat protein

fibre

6g 23g 6% 62% 28%

9g

the blood glucose, glucagon and insulin response to protein

  • The food insulin index data indicates that there is both a blood sugar and an insulin response to the glucogenic component of protein. [1]
  • A higher protein intake tends to lead to better blood sugar control, increased satiety and reduced caloric intake.
  • Digested amino acids from protein circulate in the bloodstream until they are required for protein synthesis, gluconeogenesis or the production of ketones.
  • The release of glucose from protein from gluconeogenesis is a demand driven process that is much smoother and slower compared to carbohydrate.
  • Someone who is insulin resistant and/or whose pancreas is not producing adequate insulin may benefit from higher protein with lower carbohydrate (LCHP) in order to smooth out the blood sugar response while still obtaining adequate protein.

background

Protein doesn’t significantly raise blood sugars, at least compared to carbohydrates.

At the same time however, it is generally acknowledged (at least by people with Type 1 Diabetes) that protein requires insulin.  Managing the blood glucose response to protein is a real challenge for diabetics, particularly if they are minimising carbohydrates and hence have likely increased their protein intake.

Recently an increasing number of people trying to achieve nutritional ketosis have found that they need to moderate protein in addition to limiting carbohydrates to reduce insulin to the point where significant levels of ketones can be measured in the blood.

My aim here is not to knock protein, but to better understand the insulin and glucose response to protein based on the recent food insulin index data.

My wife is a type 1 diabetic, hence anything that can be done to refine insulin dosing calculations or help inform food choices that will lead to more stable blood sugars is of interest to me.

Personally I have a tendency towards obesity and pre-diabetes (based on my 23andMe testing and a lifetime of personal experience trying to keep the weight off) so I am also interested in how I can optimise my blood sugars and reduce the insulin load of my diet so that my pancreas can keep up.  I would also love to dodge the weight creep that seems to come with middle age for most people.

This has been a challenging topic to get my head around.  It is complex and there is a lack of definitive research to provide clear guidance.  Hopefully more data and discussion can help to progress the understanding and the practical application of the theory.

I do not claim to have all the answers, but rather plenty of observations and questions.  I hope that by documenting some of these I can help move this discussion forward.   If you have some thoughts or insights on this topic be sure to leave your comments below once you’ve finished reading this article to add to the discussion.

the blood glucose response to protein

The food insulin index data contained in Clinical Application of the Food Insulin Index to Diabetes Mellitus by Kirstine Bell (Sept 2014) [2] continues to intrigue me.

There is a lot to be learned from looking at the body’s insulin response to food and the interrelationship to other parameters such as fat, protein, carbohydrates, fibre or blood glucose.

The data points on the right hand side of the chart below [3] indicate that high protein foods (e.g. fish, tuna and steak) cause a rise in blood glucose.  However the blood sugar response to protein is still small relative to the high carbohydrate foods on the left hand side of the plot.

image001

For most people, the discussion ends there.  Protein does not raise blood sugar much, therefore it is a non-issue.  Pass the extra-large steak and post workout protein shake with an extra scoop of whey thanks!

But is it really that simple?  What does the recently expanded food insulin index data tell us?

the insulin response to protein

One of the challenges I see for type 1 diabetics is that, even if they eat a low carbohydrate diet, they still struggle with high blood sugars after a high protein meal.

Type 1s who have a continuous glucose monitor know that they need to watch out for a rise in their blood glucose three or four hours after a high protein meal and apply correcting doses of insulin to keep their blood sugar from going too high.

Looking at the plot of protein versus insulin index below, we can see that the insulin response to protein is more significant than the blood glucose response to protein.

image003

For instance, the insulin index score for white fish is 42%, however it only receives a 20% glucose score (note: both are compared to the response to pure glucose which has a glucose score and a food insulin index score of 100%).

Maybe there is something going on that can’t simply be explained by the blood sugar response alone?

If we plot the glucose score versus the insulin index we see that glucose and insulin are not directly proportional.

image005

Low carbohydrate high protein foods such as chicken, cheese, tuna and bacon require a lot more insulin than would be anticipated if insulin was directly proportional to the blood glucose response.

On the lower side of the trend line we have high carbohydrate foods from whole food sources such as raisins, wholemeal pasta, brown rice and water crackers having less of an insulin response than would be anticipated from the blood glucose response.

I have run a correlation analysis with different parameters but could not find any meaningful relationship with any other parameter in the available data (i.e. total carbohydrate, sugar, fibre, protein or fat).

Perhaps this would be an interesting area for future study to see if there is some component of food processing or some other Paleoesque characteristics that influences the relationship between blood sugar and insulin, or maybe it is just the scatter that you get with real life data from in-vivo testing?

diabetic versus normal response to protein

Moving on from the food insulin index data, the figure below compares the blood sugar and insulin response to 50g of protein (200 calories) in type 2 diabetics (yellow lines) and healthy non-diabetics (white lines). [4]  We can see that:

  • Blood glucose remains fairly stable for healthy people after eating 50g of protein. However when the type 2 diabetic eats a high protein meal the insulin secreted seems to bring the blood sugar down from elevated levels!
  • Insulin is elevated for more than five hours after ingestion of protein, particularly for the insulin resistant type 2 diabetic. There’s definitely something going on with insulin in response to high protein foods, even if we don’t see a sharp increase in blood sugar.
  • The diabetic requires a lot more insulin to deal with the same quantity of protein and it takes a lot longer for the insulin levels to peak and come down.

image007

We can also see from the insulin response that protein takes more than three hours to digest and metabolise.  It is likely that the food insulin index data (which is based on the measurement of insulin over only three hours) underestimates the insulin response to protein-containing foods and that the insulinogenic demand of protein is actually higher than predicted by the food insulin index data (i.e. protein requires more than 56% of the insulin relative to carbohydrate).

what happens when we eat a lot of protein?

The question of what happens to ‘excess’ protein that is not required for muscle growth and repair is controversial and the science is not exactly clear.

Does the energy from unused protein magically disappear?  If it did then protein would be the ultimate macronutrient that everyone should eat to lose weight.  We could effectively ignore calories from protein.

Does it turn into nitrogen and get excreted in the urine?

Or does it turn into glucose ‘like chocolate cake’?

There is limited authoritative information on this topic, however some helpful guidance that I’ve found on the topic is outlined below:

  • Richard Feinman says that “…after digestion and absorption, amino acids not used for protein synthesis may be trashed.  The nitrogen is converted to ammonia which is converted to urea and excreted.  The remaining carbon skeleton can be used for energy either directly or converted to ketone bodies, particularly on a very low carbohydrate diet.” [5]
  • Richard Bernstein says “Dietary protein is not the only source of amino acids.  The proteins of your muscles continually receive amino acids from and return them to the bloodstream.  This constant flux ensures that amino acids are always available in the blood for conversion to glucose (gluconeogenesis) by the liver or to protein by the muscles and vital organs.” [6]
  • According to David Bender “In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis – an ATP-expensive, and hence thermogenic, process.” [7]

So it appears that amino acids from digestion or from the muscles circulate in the blood stream and these can be used as required for protein synthesis or to stabilise blood glucose levels.

The figure below [8] shows a comparison of the blood glucose response to ingestion of glucose and 600g of lean beef (i.e. a very big serving of steak!).

image010

During the more than eight hour period that the steak takes to digest you can see the nitrogen levels continue to rise.  Meanwhile blood glucose rises only slightly until around four hours after the meal and comes back down.

tbonesteakongrill

What appears to be happening here is that the amino acids from digestion are being progressively released into the blood stream (over a period of digestion of more than eight hours) but are not immediately converted to blood glucose.  Thus the digestion of protein does not cause a sharp rise in in blood glucose.

It is said that gluconeogenesis is a demand driven process, not a supply driven process.  What I think this means is that the body can draw on the amino acids circulating in the blood stream for muscle growth and repair (protein synthesis) or to balance the blood sugar (via gluconeogenesis) depending on requirements from moment to moment.

The fact that we don’t see a sharp rise in blood glucose in response to protein indicates that excess protein does not immediately turn into glucose.  Gluconeogenesis occurs slowly over time with the amino acids being used up as required.

However as noted by David Bender above, if we are fasting or minimising carbohydrates then our body will maximise the use of protein to produce glucose via gluconeogenesis.  Conversely, if we eating more carbohydrates and less protein the body doesn’t need to rely on protein as much for glucose.

do amino acids spill over into glucose in the bloodstream?

Most people aren’t eating so much protein that their amino acid stores in their blood are full to overflowing like peoples’ livers are typically overflowing with glucose from a higher carbohydrate diet.

It would be interesting to see what happens in someone whose blood stream became saturated with amino acids from long term consistently high protein consumption.

Would we see more protein excreted or perhaps a larger amount removed from the blood via gluconeogenesis with subsequent conversion to fat using insulin?

By comparison, when carbohydrate is eaten we typically see glucose causing an immediate rise in blood sugar because the liver is often already full.

glucagon response

A healthy non-diabetic person will release both insulin and glucagon in response to a high protein meal.

Insulin helps to metabolise the protein and grow and repair muscles (i.e. insulin is ‘anabolic’).   Glucagon helps to keep blood sugar stable and prevent it from going too low due to the action of the insulin used in the muscle growth and repair process.

The body secretes both glucagon and insulin in response to a high protein meal (as shown in the figure below [9]).  In a healthy insulin-sensitive non-diabetic person the glucagon will effectively cancel out the insulin response to the protein used for protein synthesis.  Hence we see a flat line blood glucose response in the insulin-sensitive non-diabetic.

image012

In a diabetic, particularly type 1s, we often see blood sugar rising after a high protein meal due to the initial glucagon response and then gluconeogenesis as some of the protein converts to glucose.  In the diabetic the insulin response is either inadequate (due to poor pancreas function) or ineffective (due to high insulin resistance) and therefore the blood sugar does not remain stable as it would in a metabolically healthy person.

By contrast, after we eat a high carbohydrate meal glucagon decreases as the insulin increases and the body moves into fat storage mode as shown in the following figure. [10]  The basic thesis of Protein Power is that we want to do whatever we can to maximise glucagon which promotes fat burning rather than insulin  which leads to fat storage.

image014

Even though glucogon offsets the insulinogenic effect of protein used for protein synthesis, it seems that the glucogenic portion of protein requires insulin.

I haven’t found any data on the subject, but I wonder if the body does not secrete glucagon to negate the effect of the ‘excess’ protein over and above the body’s requirement for protein synthesis (say 7 to 10% of calories)?

If this were the case then the glucogenic proportion of excess protein will behave largely like a carbohydrate with no glucagon to counteract the insulin?

glucagon, the antidote to insulin?

The observation that glucose does not rise significantly in response to protein is often taken to mean that protein is a non-issue.  [11]  [12]

This may be largely true for someone who is insulin sensitive, however diabetics with impaired pancreatic function may not be able to secrete adequate insulin to offset the effects of glucagon and keep their blood sugars stable.

If you are a type 2 diabetic or someone with impaired insulin sensitivity I suggest that it would be better to keep your carbohydrate AND protein intake to the point where your body can keep up and maintain normal blood sugars?

The image below shows the continuous glucose monitor (CGM) plot of a type 1 diabetic after ingestion of a protein shake (46.8g protein and  5.6g of carbs).

Without insulin there is a blood sugar rise over a period of more than eight hours, not dissimilar to what you would see from carbohydrates.

image016

Is this blood glucose rise from gluconeogenesis of the protein or is the blood glucose rise from glucagon in response to the ingested protein or a bit of each?  It’s hard to know.

What we do know is that there is a rise in blood glucose that needs to be managed if we are going to achieve optimal blood sugar control.

letting your pancreas keep up

For a diabetic who is insulin resistant and/or whose pancreas is not producing adequate insulin, the issue is that the total insulin load of their diet (from carbohydrates and the glucogenic component of protein) is in excess of their body’s ability to keep blood glucose under control.

From the insulin index data we know that the body’s blood sugar and insulin response are proportionate to carbohydrate plus about half of the ingested protein.

So potentially we can balance our blood glucose response by managing the glucogenic inputs, that is, by moderating protein and keeping carbohydrates adequately low.  And by doing this we can minimise, or perhaps eliminate, the need for insulin or other medications.

image019

image017

the high protein ‘hack’ for diabetics

To some extent, obtaining glucose from protein rather than carbohydrate is a beneficial ‘hack’ for someone who is not able to manage their blood sugars given:

  • eating higher levels of protein will ensure that the body’s needs for essential amino acids are met or exceeded;
  • the blood sugar rise from protein is much slower than it is for carbohydrate foods and hence it is easier to keep blood sugars under control;
  • protein takes more energy to convert to glucose than using carbohydrate directly, hence there is additional energy lost in the process (i.e. a calorie of protein is not really a calorie if you have to convert it to glucose before it can be used), [13] and
  • protein is more satiating than carbohydrates.

Paul Jaminet argues that obtaining glucose from protein is not ideal given that it’s not as energy efficient as obtaining it directly from carbohydrates.

However I think that the optimal approach is to ensure that you maximise vitamins, minerals, fibre and amino acids from carbohydrate and protein containing foods while at the same time not overwhelming your body’s ability to maintain optimal blood sugars due to excess glucose from either carbohydrates or excess protein.

To some extent it’s a balancing act between gaining adequate nutrition from things that will raise blood glucose while at the same time not overwhelming the ability of your pancreas to produce insulin to keep blood sugars in the ideal range.

The food ranking and meal ranking systems have been designed around this approach.

what is the optimum amount of protein and carbohydrates?

I find Steve Phinney’s well formulated ketogenic diet chart helpful when it comes to understanding how to optimise protein and carbohydrate intake.

image022

  • The minimum protein intake is around 10% of calories or 0.8g/kg body weight. [14] At this point the vast majority of the protein will go to muscle growth and repair.  Based on the guidance given by the WFKD triangle you might even be able to tolerate up to 20% carbohydrates and stay in nutritional ketosis if you were to keep your protein levels low.  At this point you won’t have to worry too much about gluconeogenesis messing up your blood sugars because all of the protein will be used up in protein synthesis.
  • If you are active then you will likely want higher levels of protein, with 1.2 to 1.7g/kg body weight recommended for athletic performance. [15] Higher levels of protein will ensure that you have enough amino acids for optimal physical and mental function rather than just being adequate.
  • As we move to higher levels of protein above the minimum 10% of calories we should consider also reducing carbohydrate and increasing fat, due to the fact that the glucogenic portion of the protein that is over and above the basic needs for growth and repair will likely be turned into glucose, requiring increased levels of insulin which will work against you if your goals are reducing your insulin load in order to stabilise blood sugars or to lose weight.

I have discussed the concept of balancing glucose load from protein and carbohydrates with your body’s ability to produce insulin in more detail in the article the Goldilocks glucose zone.  However if you are keeping track of your food intake you can use the formula below to calculate and track your insulin load.

image023

If you are not yet achieving normal blood sugar levels then you could try winding back your insulin load.  Most people find that they will achieve stable blood sugars and nutritional ketosis with an insulin load of around 125g, however your mileage may vary and you will likely have to tweak this level to find your optimum based on your goals and your situation.

What do you think of all this?  I would love to hear your response in the comments below.

references

[1] See http://en.wikipedia.org/wiki/Glucogenic_amino_acid,   https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0 and http://www.medschool.lsuhsc.edu/biochemistry/Courses/Biochemistry201/Desai/Amino%20Acid%20Metabolism%20I%2010-14-08.pdf

[2] http://ses.library.usyd.edu.au/handle/2123/11945

[3] Glucose score is the area under the curve of the rise in blood glucose response over three hours relative to pure glucose tested in healthy non-diabetics.

[4] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524031/

[5] Chapter 5 of The World Turned Upside Down: The Second Low Carbohydrate Revolution.

[6] Dr Bernstein’s Diabetes Solution, page 96.

[7] https://www.dropbox.com/s/4dkl03mz2fci71v/The%20metabolism%20of%20%E2%80%9Csurplus%E2%80%9D%20amino%20acids.pdf?dl=0

[8] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC424828/pdf/jcinvest00541-0071.pdf

[9] https://books.google.com.au/books?id=3FNYdShrCwIC&printsec=frontcover&dq=marks+basic+medical+biochemistry&hl=en&sa=X&ei=-ctaVcivOJfq8AXL84CAAw&redir_esc=y#v=onepage&q=glucagon&f=false

[10] https://books.google.com.au/books?id=3FNYdShrCwIC&printsec=frontcover&dq=marks+basic+medical+biochemistry&hl=en&sa=X&ei=-ctaVcivOJfq8AXL84CAAw&redir_esc=y#v=onepage&q=glucagon&f=false

[11] http://caloriesproper.com/dietary-protein-does-not-negatively-impact-blood-glucose-control/

[12] http://www.ketotic.org/2013/01/protein-gluconeogenesis-and-blood-sugar.html

[13] See chapter 15 of Richard Feinman’s The World Turned Upside Down: The Second Low Carbohydrate Revolution for an in depth discussion of this topic.

[14] This is based on the point where at least half of the population has adequate protein!  Not exactly an ideal goal to be shooting for!

[15] https://www.dropbox.com/s/zelfo3n0q8kvtfx/Paoli%20et%20al.%20(2015)%20The%20Ketogenic%20Diet%20and%20Sport%20A%20Possible%20Marriage.pdf?dl=0

baked eggs with sardines

This recipe for baked eggs with sardines is from Pete Evans‘ cookbook Paleo Everyday.

Pete has teamed up with Paleo guru Nora Gedgaudas and has become a bit of a love / hate sensation in Australia lately.   The had a great TV series The Paleo Way and have been touring Australia doing cooking demonstrations and TV show appearances.

Pete’s Facebook page has nearly a million followers so he’s a force to be reckoned with, even if the media love to hate him.

This recipe from the book was posted online  here.  We have the book and enjoy lots of meals from it, though they do take some prep time and the long list of ingredients aren’t always easy to find at the supermarket.

Sardines have a fantastic protein profile, heaps of vitamin D, and B12 and selenium.  They also have a low insulin load being 50% fat and 50% protein.  Sardines are up there with organ meats when it comes to their nutritional profile and a bit more palatable.

Chrome Legacy Window 12062015 32814 AM.bmp

The base recipe does very well on the nutrient and protein scores, however the net carbs are a little high for a diabetic at 19g per 500 calorie serving.  As a reference, Dr Richard Bernstein recommends that type 1s keep their carbs to 6g at breakfast with 12g at lunch and dinner.

Chrome Legacy Window 7042015 50037 AM.bmp

net carbs insulin load carb insulin fat protein fibre
19g 35g 56% 53% 23% 11g

A diabetic may wish to reduce the number of tomatoes as shown in the analysis below which reduces the net carbs to a much more ideal 12g per 500 calorie serving.    With the reduction in tomatoes we get a small drop in the nutrient score from 80 to 73, although the amino acid score increases from 125 to 129.  Tomatoes can also be something to watch out for if you have autoimmune issues.

Chrome Legacy Window 7042015 50817 AM.bmp

net carbs

insulin load carb insulin fat protein

fibre

12g 29g 42% 59% 25%

8g

superfoods for athletes and the metabolically healthy

People who are metabolically healthy can focus on maximising nutrient density without worrying too much about their blood glucose or calorie density.

These foods are ranked using nutrient density per weight which prioritises higher calorie density foods which is more appropriate for an athlete wanting to replenish energy rather than minimise calories.  If you’re just completed a 100km ride it makes sense to reach for the nuts than the parsley to replenish energy.

Someone who is active and metabolically healthy will be able to tolerate higher levels of carbohydrates to replenish glycogen stores after intense exercise.  However there is no need to eat more carbohydrates than would raise blood glucose levels to 6.7mmol/L (12omg/dL).  Exceeding this level would indicate that the liver and muscle glucagon stores are overfull and excess carbohydrate could lead to insulin resistance and metabolic damage.

The list of veggies is not as long as you might think because they are not as nutrient dense as the other options.  Veggies more extensively on the weight loss list where a lower calorie density is more of a priority.

Who People doing intense exercise and / or people who are metabolically healthy:

  • HbA1c < 5.4mmol/L (ideally less than 5.0mmol/L)
  • Average blood sugar < 5.4mmol/L (100mg/dL)
  • Average fasting blood sugar < 5.0mmol/L (90mg/dL)
When If your blood sugars or weight deviate from optimum consider reverting to the optimal foods for weight loss or diabetes.
Macro
  • 5 – 30% carbohydrates
  • 15 – 30% protein
  • 40 – 80% fat
How Nutrient density, high fibre, and cost with less focus on choosing low insulinogenic foods.

For more details see

nuts, seeds & legumes

  • chia seeds
  • flax seeds
  • sunflower seed
  • same seeds
  • pumpkin seeds
  • soybeans
  • sesame butter
  • brazil nuts
  • peanuts
  • walnuts
  • almonds
  • hazel nuts
  • pistachio nuts
  • coconut meat
  • pine nuts
  • pecans
  • macadamia nuts
  • peanut butter
  • cashew nuts
  • lentils
  • coconut milk
  • coconut cream
  • bread beans
  • split peas
  • beans
  • natto
  • lima beans
  • mung beans
  • chick peas

vegetables and spices

  • parsley
  • basil
  • paprika
  • spearmint
  • rosemary
  • thyme
  • cinnamon
  • turnip greens
  • spirulina
  • alfalfa
  • spinach
  • artichoke
  • cauliflower

dairy and egg

  • egg yolk
  • whole egg
  • Parmesan
  • Gruyere
  • goat cheese
  • Edam
  • Gouda
  • cheddar
  • provolone
  • blue cheese
  • Colby
  • Limburger
  • brie
  • mozzarella
  • cream cheese
  • feta
  • sour cream
  • cream

animal products

  • bacon
  • caviar
  • beef
  • pepperoni
  • liver
  • chorizo
  • mackerel
  • lamb
  • salami
  • anchovy
  • herring
  • pork
  • salmon
  • foie gras
  • turkey
  • veal
  • roe
  • sardines
  • goose
  • chicken
  • halibut
  • bratwurst
  • ham

fats and oils

  • fish oil
  • butter
  • palm oil
  • avocado oil
  • walnut oil
  • coconut oil
  • lard
  • hazelnut oil
  • almond oil

fruit

  • avocado
  • olives

other

  • wheat bran (crude)
  • All Bran
  • rice bran (crude)
  • wheat germ
  • cocoa (unsweetened)

Download printer friendly version.

ND / cal

ND / weight fibre / cal fibre / weight calories / 100g

insulinogenic (%)

5%

30% 10% 5%

5%

45%

 

 

physiological insulin resistance and coffee addiction

I have a confession…  I like coffee.

I like coffee in the morning.

I like coffee in the afternoon.

I like coffee black.  I like it white.

I like it with sugar, with chocolate, or just plain.

I like the taste of coffee.

I like the way it makes me feel and helps me stay focused.

getting more out of my coffee

Do you know how I could enjoy coffee more?

I could stop drinking so darn much of it, that’s how.

If I drank less coffee I would restore my sensitivity to it.

It would then give me more of a hit when I did occasionally have it.

getting less out of my insulin

In a similar way that many of us have become addicted to coffee that leaves us less sensitive to the impact of caffeine, many of us have also become addicted to cheap processed simple carbohydrates that leave us insensitive to insulin.  We become more sensitive to carbohydrate and insulin if we have less of it.

the physiological insulin resistance straw man argument

One of the criticisms that is levelled at low carbohydrate diets is that it causes what is called ‘physiological insulin resistance’.

This can mean that a person who is restricting carbohydrates may end up with higher fasting blood sugars and may have higher blood sugars after a higher carbohydrate meal.

Check out this video to see how some interpret ‘physiological insulin resistance’ to be a bad thing and a reason to eat lots of carbohydrates.

diabetes diagnosis criteria

There are a number of factors that are considered in the diagnosis of someone with type 2 diabetes: [1]

  1. HbA1c, which is a measure of your average glucose over the past three months,
  2. random blood sugar,
  3. fasting blood sugar, and
  4. oral glucose test.

what is physiological insulin resistance?

One of the clearest explanations of physiological insulin resistance I’ve seen comes from Paul Jaminet who says that physiological insulin resistance is a protective response of the body that ensures that the brain gets the benefit of a limited supply of glucose.

Because the rest of the body is refusing to take up glucose, and the liver takes it up slowly, a meal of carbohydrates is followed by higher blood glucose levels in someone on a low carbohydrate diet.

The human body is very adaptive to different situations and different fuel sources.  Just because our reference data is from the past few decades when we have typically eaten large amounts of processed carbohydrates, we take that as the new normal.

Is physiological insulin resistance such a bad thing?

Maybe, maybe not.

Let’s look at what this means when it comes to the various tests that are done to diagnose diabetes.

oral glucose tolerance test

Yes, you may fail an oral glucose test if you are on a low carbohydrate diet due to physiological insulin resistance.  But this guy will probably see a rise in his blood sugars too if you fed him the equivalent of two cans of Coke in one hit. [2]

image001

If you have a large dose of fast digesting carbohydrates your body is not primed to dump a pile of insulin into the system.  It takes a while to wind up and adjust to large amount of carbohydrates. You also don’t have a high level of insulin washing around in your system from the last pizza meal.

It’s sort of like me and my coffee addiction.  Because there is not a lot of time when I don’t have some caffeine in my system I am not as sensitive to caffeine as I would be if I only had an occasional cup.

If you do want to pass an OGTT all you have to do is increase your carbohydrates for a few days before the test and your pancreas will increase the amount of insulin in your system and be better prepared for a high dose of carbohydrates. [3]

fasting blood sugar

Some people may find that their fasting blood sugars rise a little when they start consuming more fat and decrease carbohydrates, particularly if they increase their fat intake.

This is an area where your mileage may vary.  I have seen some people run at very low carbohydrate levels and end up with progressively higher fasting blood sugars.  Others see their fasting blood sugars continue to come down and ketones go up as they decrease the insulin load of their diet.

When on a lower carbohydrate diet you won’t have high levels of insulin floating around in your system and your body may choose to run blood glucose levels a little bit higher by secreting more glucose from the liver.  This is not really a problem if you feel OK.

Many people find this to be a passing phase and after a time of keeping the insulin load of their diet low see their blood sugars come down.

As you keep the glucose load of your diet low you will ‘dry up the root’ and eventually after glucose stores in the liver are depleted, your fatty liver is resolved and your body fat levels are reduced you just won’t have as much glucose available for your liver to keep pumping into your bloodstream.

If you find that you don’t feel good at very low carbohydrate levels then by all means increase your carbohydrates and protein particularly to ensure that you are getting adequate nutrition.  Check out the Goldilocks glucose zone article for more thoughts on how to find the right level of glucose for you.

Most people find that their calorie intake decreases with a LCHF approach, however as this study from Dr Thomas Syfriend shows long term excess calories even with a high fat diet is probably not going to end well.  Intermittent fasting or tracking your calories to make sure you’re not overdoing the butter may be helpful if you’re not achieving normal fasting blood sugars.

random blood sugar

Carbohydrates are the most potent thing that raises blood sugar.  If you are on a low carbohydrate diet chances are your random blood sugar (i.e. non-fasting) will be much lower than if you were on a high carbohydrate diet.

image003

With a smaller amount of dietary carbohydrates you should see much lower post meal blood sugars.

Generally the small amount of insulin that you generate after meals will bring your blood sugar down quickly.

HbA1c

With lower post meal blood sugars your average blood sugar will likely be much lower on a low carbohydrate diet.  Therefore your HbA1c, which is a measure of your average blood sugar over three months, [4] should be lower.

insulin levels

We are now understanding more and more that insulin resistance is public health enemy number one.  Insulin resistance is a better predictor of heart disease than HDL, LDL, BMI and smoking! [5]

Making sure you have some time when high levels of insulin are not floating around in your blood stream will help increase your insulin sensitivity and enable your body to manage your blood sugars.

Consistently high levels of carbohydrates will ensure that your insulin resistance stays high!

image005

I am probably not going to stop drinking coffee any time soon, but in view of the evidence I do try to make sure that I have periods where I give my body a chance to restore its sensitivity to insulin!

If you are interested in reducing your insulin load while ensuring that you achieve great nutrition that supports your goals, check out this list of optimal foods and meals.

 

[1] http://www.webmd.com/diabetes/tc/criteria-for-diagnosing-diabetes-topic-overview

[2] 1922 photograph of an Aboriginal hunter (from the National Museum of Australia) via http://www.primalbody-primalmind.com/the-australian-indigenous-health-project/ .  It’s sad to see how the Aborigines in Australia have done on the white man’s diet when they were such a proud healthy people before we came along!

[3] http://www.marksdailyapple.com/does-eating-low-carb-cause-insulin-resistance/#axzz3besTwOta

[4] http://en.wikipedia.org/wiki/Glycated_hemoglobin

[5] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628708/pdf/361.pdf